Effect of trace Si on MgO·Al2O3 inclusion in ultra-low-carbon steel


There are four types of Mg–Al–Si–O inclusions observed in the Mg-treated Al-deoxidized ultra-low-carbon steel containing trace Si, including SiO2, 2MgO·SiO2, 3Al2O3·2SiO2, and 2MgO·2Al2O3·5SiO2 and their composite inclusions. Using FactSage, the phase relationship of Mg–Al–Si–O system at 1473–2073 K was calculated using FactSage software, and the change in Si content can change the stable region range of different Mg–Al–Si–O-based inclusions. Based on the types of inclusions observed experimentally, the formation pathways of inclusions were predicted and a kinetic model was established to describe the formation process of the xMgO·yAl2O3–Mg–Al–Si–O and xAl2O3·ySiO2–Mg–Al–Si–O inclusions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. [1]

    S. Kimura, K. Nakajima, S. Mizoguchi, Metall. Mater. Trans. B 32 (2001) 79–85.

    Article  Google Scholar 

  2. [2]

    H. Wang, J. Li, C.B. Shi, J. Li, Ironmak. Steelmak. 44 (2017) 128–133.

    Article  Google Scholar 

  3. [3]

    G. Du, J. Li, Z.B. Wang, C.B. Shi, Steel Res. Int. 88 (2017) 1600185.

    Article  Google Scholar 

  4. [4]

    X.B. Li, Y. Min, Z. Yu, C.J. Liu, M.F. Jiang, J. Iron Steel Res. Int. 23 (2016) 415–421.

    Article  Google Scholar 

  5. [5]

    H.N. Lou, C. Wang, B.X. Wang, Z.D. Wang, R.D.K. Misra, ISIJ Int. 59 (2019) 312–318.

    Article  Google Scholar 

  6. [6]

    L.Y. Xu, J. Yang, R.Z. Wang, W.L. Wang, Y.N. Wang, J. Iron Steel Res. Int. 25 (2018) 433–441.

    Article  Google Scholar 

  7. [7]

    L.Z. Wang, S.F. Yang, J.S. Li, S. Zhang, J.T. Ju, Metall. Mater. Trans. B 48 (2017) 805–818.

    Article  Google Scholar 

  8. [8]

    Z.H. Jiang, C. Wang, W. Gong, H.D. Wang, Ironmak. Steelmak. 42 (2015) 669–674.

    Article  Google Scholar 

  9. [9]

    F. Chai, C.F. Yang, H. Su, Y.Q. Zhang, Z. Xu, J. Iron Steel Res. Int. 16 (2009) No. 1, 69–74.

    Article  Google Scholar 

  10. [10]

    B. Wen, B. Song, N. Pan, Q.Y. Hu, J.H. Mao, Ironmak. Steelmak. 38 (2011) 577–583.

    Article  Google Scholar 

  11. [11]

    Q.S. Zhang, Y. Min, H.S. Xu, J.J. Xu, C.J. Liu, ISIJ Int. 59 (2019) 391–397.

    Article  Google Scholar 

  12. [12]

    Z.H. Jiang, S.J. Li, Y. Li, J. Iron Steel Res. Int. 18 (2011) No. 2, 14–17.

    MathSciNet  Article  Google Scholar 

  13. [13]

    Y.Y. Bi, A.V. Karasev, P.G. Jönsson, ISIJ Int. 53 (2013) 2099–2109.

    Article  Google Scholar 

  14. [14]

    T.S. Zhang, Y. Min, M.F. Jiang, Can. Metall. Quart. 54 (2015) 161–169.

    Article  Google Scholar 

  15. [15]

    J.H. Park, S.B. Lee, D.S. Kim, Metall. Mater. Trans. B 36 (2005) 67–73.

    Article  Google Scholar 

  16. [16]

    M. Jiang, X.H. Wang, B. Chen, W.J. Wang, ISIJ Int. 50 (2010) 95–104.

    Article  Google Scholar 

  17. [17]

    J.W. Kim, S.K. Kim, D.S. Kim, Y.D. Lee, P.K. Yang, ISIJ Int. 36 (1996) S140–S143.

    Article  Google Scholar 

  18. [18]

    J.H. Park, Metall. Mater. Trans. B 38 (2007) 657–663.

    Article  Google Scholar 

  19. [19]

    L. Cao, G.C. Wang, X.H. Yuan, P.L. Jin, S. Sridhar, Metals 9 (2019) 900.

    Article  Google Scholar 

  20. [20]

    K.M. Fang, R.M. Ni, Metall. Trans. A 17 (1986) 315–323.

    Article  Google Scholar 

  21. [21]

    G.C. Wang, S.L. Li, X.G. Ai, C.M. Zhang, C.B. Lai, J. Iron Steel Res. Int. 22 (2015) 566–572.

    Article  Google Scholar 

  22. [22]

    Y. Liu, L.F. Zhang, H.J. Duan, Y. Zhang, Y. Luo, A.N. Conejo, Metall. Mater. Trans. A 47 (2016) 3015–3025.

    Article  Google Scholar 

  23. [23]

    T. Nishi, K. Shinme, Tetsu-to-Hagané 84 (1998) 837–843.

    Article  Google Scholar 

  24. [24]

    W. Yang, C.B. Guo, C. Li, L.F. Zhang, Metall. Mater. Trans. B 48 (2017) 2267–2273.

    Article  Google Scholar 

  25. [25]

    Y. Ren, L.F. Zhang, P.C. Pistorius, Metall. Mater. Trans. B 48 (2017) 2281–2292.

    Article  Google Scholar 

  26. [26]

    W. Yang, C.B. Guo, L.F. Zhang, H.T. Ling, C. Li, Metall. Mater. Trans. B 48 (2017) 2717–2730.

    Article  Google Scholar 

  27. [27]

    X. G. Huang, Iron and steel metallurgy principle, 4rd ed., Metallurgical Industry Press, Beijing, China, 2016.

    Google Scholar 

  28. [28]

    S. Luo, B.Y. Wang, Z.H. Wang, D.B. Jiang, W.L. Wang, M.Y. Zhu, ISIJ Int. 57 (2017) 2000–2009.

    Article  Google Scholar 

  29. [29]

    M.H. Zayan, O.M. Jamjoom, N.A. Razik, Oxid. Met. 34 (1990) 323–333.

    Article  Google Scholar 

Download references


The authors are grateful to the National Natural Science Foundation of China (Grant No. 51874170) and the Union Foundation of State Key Laboratory of Marine Equipment and Applications-University of Science and Technology Liaoning (SKLMEA-USTL-201706) for supporting this work.

Author information



Corresponding authors

Correspondence to De-li Shang or Xin-gang Ai or Guo-cheng Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Shang, Dl., Ai, Xg. et al. Effect of trace Si on MgO·Al2O3 inclusion in ultra-low-carbon steel. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-020-00529-3

Download citation


  • Magnesium treatment
  • Al deoxidation
  • Mg–Al–Si–O-based inclusion
  • Trace Si
  • Ultra-low-carbon steel