Skip to main content
Log in

Effect of process parameters on dry centrifugal granulation of molten slag by a rotary disk atomizer

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Dry centrifugal granulation (DCG) experiments for blast furnace slag (BFS) were performed by means of a rotary disk atomizer since water quenching method can create a series of problems. The results showed that the DCG method can granulate the BFS, but the results are easily affected by the slag flow rate, disk rotating speed, disk radius, disk material and slag falling height. The granulating parameters with an excessive flow rate, low rotating speed, SiN–SiC disk, stainless steel disk and low slag falling height are detrimental to the granulation process. The most suitable parameters for granulation are a slag flow rate of 5.1 × 10−5 m3/s, a disk rotating speed of 1500–2300 r/min, a slag falling height of 0.8 m and a smooth graphitic disk with the radius of 0.1 m. In the absence of an off-center flow, the overall best granulating effect produces round particles with mean diameter of 3.43 mm without creating slag fiber. The vitreous content of the BFS particles granulated by graphite disks is 92%, which meets the requirements of cement raw materials. The Bond work index of dry granulated BFS is 18.4 kWh/t, and the grindability of dry granulated slag and water-quenched slag is similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Mizuochi, T. Akiyama, T. Shimada, E. Kasai, J.I. Yaji, ISIJ Int. 41 (2001) 1423–1428.

    Article  Google Scholar 

  2. Y.Q. Sun, Z.T. Zhang, L.L. Liu, X.D. Wang, Energies 7 (2014) 1673–1684.

    Article  Google Scholar 

  3. H. Wang, J.J. Wu, X. Zhu, Q. Liao, L. Zhao, Appl. Energy 171 (2016) 314–324.

    Article  Google Scholar 

  4. T. Akiyama, T. Mizuochi, J.I. Yagi, H. Nogami, Steel Res. Int. 75 (2004) 122–127.

    Article  Google Scholar 

  5. H. Purwanto, T. Akiyama, Int. J. Hydrogen Energy 31 (2006) 491–495.

    Article  Google Scholar 

  6. J. Ding, Y.R. Wang, R. Gu, W.L. Wang, J.F. Lu, Appl. Energy 250 (2019) 1270–1279.

    Article  Google Scholar 

  7. H. Purwanto, E. Kasai, T. Akiyama, ISIJ Int. 50 (2010) 1319–1325.

    Article  Google Scholar 

  8. M. Cooksey, A. Guiraud, B. Kuan, Y.H. Pan, J. Sustain. Metall. 5 (2019) 181–194

    Article  Google Scholar 

  9. Y.Q. Sun, Z.T. Zhang, Metall. Mater. Trans. E 3 (2016) 114–122.

    Google Scholar 

  10. Y.Q. Sun, Z.T. Zhang, L.L. Liu, X.D. Wang, Energies 8 (2015) 1917–1935.

    Article  Google Scholar 

  11. T. Shimada,V. Kochura, T. Akiyama, E. Kasai, J.I. Yagi, ISIJ Int. 41 (2001) 111–115.

    Article  Google Scholar 

  12. T.D. Hadley, Y.H. Pan, K.S. Lim, J. Orellana, Int. J. Miner. Process. 142 (2015) 91–100.

    Article  Google Scholar 

  13. N. Wang, H. Peng, X. Ling, J.Q. Kang, M.H. Xu, Energy Procedia 105 (2017) 622–627.

    Article  Google Scholar 

  14. X. Zhu, H. Zhang, Y. Tan, H. Wang, Q. Liao, Appl. Therm. Eng. 88 (2015) 157–164.

    Article  Google Scholar 

  15. J.J. Wu, H. Wang, X. Zhu, Q. Liao, B. Ding, Appl. Therm. Eng. 89 (2015) 494–504.

    Article  Google Scholar 

  16. J.X. Liu, Q.B. Yu, P. Li, W.Y. Du, Appl. Therm. Eng. 40 (2012) 351–357.

    Article  Google Scholar 

  17. J.X. Liu, Q.B. Yu, W.J. Duan, Q. Qin, Appl. Therm. Eng. 73 (2014) 888–893.

    Article  Google Scholar 

  18. J.X. Liu, Q.B. Yu, Z.L. Zuo, W.J. Duan, Z.C. Han, Q. Qin, F. Yang, Appl. Therm. Eng. 103 (2016) 1112–1118.

    Article  Google Scholar 

  19. Y.H. Pan, P. Witt, D.S. Xie, in: 7th Int. Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 2009, pp. 1–6.

  20. Q.M. Chang, X.W. Li, H.W. Ni, W.Y. Zhu, C.G. Pan, S.D. Hu, ISIJ Int. 55 (2015) 1361–1366.

    Article  Google Scholar 

  21. H. Purwanto, T. Mizuochi, T. Akiyama, Mater. Trans. 46 (2005) 1324–1330.

    Article  Google Scholar 

  22. D.X. Wang, X. Ling, H. Peng, Appl. Therm. Eng. 63 (2014) 387–395.

    Article  Google Scholar 

  23. H. Purwanto, T. Mizuochi, H. Tobo, M. Takagi, T. Akiyama, Mater. Trans. 45 (2004) 3286–3290.

    Article  Google Scholar 

  24. Y. Tan, X. Zhu, X.Y. He, B. Ding, H. Wang, Q. Liao, H. Li, Powder Technol. 323 (2018) 176–185.

    Article  Google Scholar 

  25. B. Lin, H. Wang, X. Zhu, Q. Liao, B. Ding, Appl. Therm. Eng. 96 (2016) 432–440.

    Article  Google Scholar 

  26. Y.Q. Sun, H.W. Shen, H. Wang, X.D. Wang, Z.T. Zhang, Energy 76 (2014) 761–767.

    Article  Google Scholar 

  27. B. Ding, X. Zhu, H. Wang, X.Y. He, Y. Tan, Int. J. Heat Mass Transfer 118 (2018) 471–479.

    Article  Google Scholar 

  28. X. Zhu, B. Ding, H. Wang, X.Y. He, Y. Tan, Q. Liao, Appl. Therm. Eng. 130 (2018) 1033–1043.

    Article  Google Scholar 

  29. J. Gao, Y.H. Feng, D.L. Feng, Z. Zhang, X.X. Zhang, Int. J. Heat Mass Transfer 146 (2020) 118888.

    Article  Google Scholar 

  30. J.J. Wu, H. Wang, X. Zhu, Q. Liao, K. Li, Appl. Therm. Eng. 111 (2017) 1557–1564.

    Article  Google Scholar 

  31. C. Czisch, U. Fritsching, Mater. Sci. Eng. A 477 (2008) 21–25.

    Article  Google Scholar 

  32. T. Mizuochi, T. Akiyama, ISIJ Int. 43 (2003) 1469–1471.

    Article  Google Scholar 

  33. H. Peng, X.K. Shan, X. Ling, D.X. Wang, J. Li, Appl. Therm. Eng. 128 (2018) 1565–1578.

    Article  Google Scholar 

  34. H. Peng, X.K. Shan, X. Ling, D.X. Wang, J. Li, Results Phys. 11 (2018) 385–393.

    Article  Google Scholar 

  35. Y. Tan, H. Wang, X. Zhu, Y.W. Lv, X.Y. He, Q. Liao, Appl. Therm. Eng. 159 (2019) 113977.

    Article  Google Scholar 

  36. Y. Tan, X. Zhu, H. Wang, X.Y. He, B. Ding, Q. Liao, Appl. Therm. Eng. 142 (2018) 683–694.

    Article  Google Scholar 

  37. J.X. Liu, Q.B. Yu, Z.L. Zuo, F. Yang, W.J. Duan, Q. Qin, Constr. Build. Mater. 131 (2017) 381–387.

    Article  Google Scholar 

  38. J.X. Liu, Q.B. Yu, Z.L. Zuo, F. Yang, Z.C. Han, Q. Qin, Cement Concr. Compos. 95 (2019) 19–24.

    Article  Google Scholar 

  39. J.J. Wu, H. Wang, X. Zhu, Q. Liao, J. Li, L. Lin, CIESC Journal 66 (2015) 2474–2480.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2018YFC1900602) and the Open Youth Fund of the State key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology (2018QN03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zhang or Hong-wei Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Rj., Zhang, H., Li, Y. et al. Effect of process parameters on dry centrifugal granulation of molten slag by a rotary disk atomizer. J. Iron Steel Res. Int. 28, 263–271 (2021). https://doi.org/10.1007/s42243-020-00523-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00523-9

Keywords

Navigation