Skip to main content

Advertisement

Log in

Tuning Cr-rich nanoprecipitation and heterogeneous structure in equiatomic CrFeNi medium-entropy stainless alloys

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

High-/medium-entropy stainless alloys (HESAs/MESAs) are a new kind of alloys with great potential to combine excellent properties from high-/medium-entropy alloys (HEAs/MEAs) and stainless steels. A CrFeNi MESA was chosen to investigate its microstructures and mechanical behaviors. After homogenization, the strength and ductility of CrFeNi MESAs with single-phase face-centered-cubic (fcc) structure were higher compared with those of Fe100−xyCrxNiy austenitic stainless steels. Cr-rich body-centered-cubic (bcc) precipitates and heterogeneous structure were introduced by cold rolling and annealing at 800 °C. Rolling at 700 °C results in higher dislocation density and the occurrence of lamellar Cr-rich bcc precipitates. High-density dislocations and fcc grains with heterogeneous structure, together with Cr-rich bcc precipitates, contribute to a yield strength improvement of about 50 MPa, and appreciable tensile yield strength of ~ 540 MPa and fracture strain of ~ 20% are obtained. It reveals that not only compositional variations but also grain size and phase structure tuning can be utilized for achieving desired mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Q. Liu, H. Sun, H. Yin, L. Guo, J. Qiu, J. Lin, Z. Tang, Corros. Sci. 160 (2019) 108174.

    Article  Google Scholar 

  2. A.A. Tiamiyu, U. Eduok, J.A. Szpunar, A.G. Odeshi, Sci. Rep. 9 (2019) 12116.

    Article  Google Scholar 

  3. Z. Ren, A.H. Heuer, F. Ernst, Acta Mater. 167 (2019) 231–240.

    Article  Google Scholar 

  4. L. Xiong, Z.S. You, S.D. Qu, L. Lu, Acta Mater. 150 (2018) 130–138.

    Article  Google Scholar 

  5. J.E. Pawel, D.J. Alexander, M.L. Grossbeck, A.W. Longest, A.F. Rowcliffe, G.E. Lucas, S. Jitsukawa, A. Hishinuma, K. Shiba, J. Nucl. Mater. 212–215 (1994) 442–447.

    Article  Google Scholar 

  6. R.P. Reed, Acta Metall. 10 (1962) 865–877.

    Article  Google Scholar 

  7. E. Salama, M.M. Eissa, A.S. Tageldin, Nucl. Eng. Technol. 51 (2019) 784–791.

    Article  Google Scholar 

  8. M. Murayama, K. Hono, H. Hirukawa, T. Ohmura, S. Matsuoka, Scripta Mater. 41 (1999) 467–473.

    Article  Google Scholar 

  9. J.C.M. Farrer, The alloy tree: a guide to low-alloy steels, stainless steels, and nickel-base alloys, CRC, Boca Raton, USA, 2004.

    Book  Google Scholar 

  10. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1–93.

    Article  Google Scholar 

  11. S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 319 (2019) 1807142.

    Article  Google Scholar 

  12. Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4 (2014) 6200.

    Article  Google Scholar 

  13. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Acta Mater. 60 (2012) 5723–5734.

    Article  Google Scholar 

  14. C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, J. Electrochem. Soc. 154 (2007) C424–C430.

    Article  Google Scholar 

  15. O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, D.B. Miracle, J. Mater. Sci. 47 (2012) 6522–6534.

    Article  Google Scholar 

  16. D. Raabe, C.C. Tasan, H. Springer, M. Bausch, Steel Res. Int. 86 (2015) 1127–1138.

    Article  Google Scholar 

  17. V. Raghavan, J. Phase Equilib. 24 (2003) 261–264.

    Article  Google Scholar 

  18. D. Liang, C. Zhao, W. Zhu, P. Wei, F. Jiang, Y. Zhang, Q. Sun, F. Ren, Mater. Sci. Eng. A 762 (2019) 138107.

    Article  Google Scholar 

  19. Q. Li, T.W. Zhang, J.W. Qiao, S.G. Ma, D. Zhao, P. Lu, B. Xu, Z.H. Wang, Mater. Sci. Eng. A 767 (2019) 138424.

    Article  Google Scholar 

  20. K. Chen, Y. Yang, G. Shao, K.J. Liu, Steel Res. Int. 82 (2011) 1325–1331.

    Article  Google Scholar 

  21. X.L. Liu, Q.Q. Xue, W. Wang, L.L. Zhou, P. Jiang, H.S. Ma, F.P. Yuan, Y.G. Wei, X.L. Wu, Materialia 7 (2019) 100376.

    Article  Google Scholar 

  22. C. Laird, H.I. Aaronson, Acta Metall. 17 (1969) 505–519.

    Article  Google Scholar 

  23. D.A. Porter, K.E. Easterling, Phase transformation in metals and alloys, 2nd ed., Chapman and Hall, New York, USA, 1992.

    Book  Google Scholar 

  24. G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, E.P.J.A.M. George, Acta Mater. 161 (2018) 338–351.

    Article  Google Scholar 

  25. M. Grujicic, W.S. Owen, Acta Metall. Mater. 43 (1995) 4201–4211.

    Article  Google Scholar 

  26. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61 (2013) 4887–4897.

    Article  Google Scholar 

  27. G. Neumann, C. Tuijn, Self diffusion and impurity diffusion in pure metals: handbook of experimental data, Elsevier, Oxford, UK, 2009.

    Google Scholar 

  28. J.L. Maloney, W.M. Garrison Jr., Acta Mater. 53 (2005) 533–551.

    Article  Google Scholar 

  29. L.E. Iorio, W.M. Garrison Jr., Metall. Mater. Trans. A 37 (2006) 1165–1173.

    Article  Google Scholar 

  30. J. Hou, X. Shi, J. Qiao, Y. Zhang, P.K. Liaw, Y. Wu, Mater. Des. 180 (2019) 107910.

    Article  Google Scholar 

  31. T.W. Zhang, S.G. Ma, D. Zhao, Y.C. Wu, Y. Zhang, Z.H. Wang, J.W. Qiao, Int. J. Plasticity 124 (2019) 226–246.

    Article  Google Scholar 

  32. H.Y. Yasuda, H. Miyamoto, K. Cho, T. Nagase, Mater. Lett. 199 (2017) 120–123.

    Article  Google Scholar 

  33. B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, R. Banerjee, Mater. Des. 121 (2017) 254–260.

    Article  Google Scholar 

  34. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357 (2017) 1029–1032.

    Article  Google Scholar 

  35. P. Behjati, A. Kermanpur, A. Najafizadeh, H.S. Baghbadorani, Mater. Sci. Eng. A 618 (2014) 16–21.

    Article  Google Scholar 

  36. J. Gu, M. Song, Scripta Mater. 162 (2019) 345–349.

    Article  Google Scholar 

  37. S.R. Reddy, U. Sunkari, A. Lozinko, R. Saha, S. Guo, P.P. Bhattacharjee, Intermetallics 114 (2019) 106601.

    Article  Google Scholar 

  38. S.R. Reddy, S. Yoshida, T. Bhattacharjee, N. Sake, A. Lozinko, S. Guo, P.P. Bhattacharjee, N. Tsuji, Sci. Rep. 9 (2019) 11505.

    Article  Google Scholar 

  39. E. Nembach, Particle strengthening of metals and alloys, Wiley, New York, USA, 1997.

    Google Scholar 

  40. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187–196.

    Article  Google Scholar 

  41. K. Ming, X. Bi, J. Wang, Int. J. Plasticity 100 (2017) 177–191.

    Article  Google Scholar 

  42. T. Gladman, Mater. Sci. Technol. 15 (1999) 30–36.

    Article  Google Scholar 

  43. S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scripta Mater. 134 (2017) 33–36.

    Article  Google Scholar 

  44. S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165 (2019) 444–458.

    Article  Google Scholar 

  45. T.C. Courtney, Mechanical behavior of materials, McGraw-Hill, New York, USA, 2004.

    Google Scholar 

  46. Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428–441.

    Article  Google Scholar 

  47. D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448–511.

    Article  Google Scholar 

  48. M. Laurent-Brocq, L. Perrière, R. Pirès, G. Bracq, T. Rieger, Y. Danard, I. Guillot, Materialia 7 (2019) 100404.

    Article  Google Scholar 

  49. M. Komarasamy, S. Shukla, N. Ley, K. Liu, K. Cho, B. McWilliams, R. Brennan, M.L. Young, R.S. Mishra, Mater. Sci. Eng. A 736 (2018) 383–391.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Natural Science Foundation of Shanxi Province, China (Nos. 201901D111105 and 201901D111114), Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (2019), and the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology, No. KFJJ20-13 M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-wei Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wang, Xj., Zhang, Tw. et al. Tuning Cr-rich nanoprecipitation and heterogeneous structure in equiatomic CrFeNi medium-entropy stainless alloys. J. Iron Steel Res. Int. 29, 529–536 (2022). https://doi.org/10.1007/s42243-020-00520-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00520-y

Keywords

Navigation