Skip to main content
Log in

Effect of basicity and Al2O3 on viscosity of ferronickel smelting slag

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of the Al2O3 content and basicity (the molar ratio of MgO to SiO2) on the viscosity of a SiO2–MgO–FeO–Al2O3–CaO slag was studied to fully understand the smelting process of the ferronickel alloy. Experimental results show that the slag is a mixture of liquid and solid phases at the experimental temperature. The viscosity decreased as the basicity increased and increased as the Al2O3 content increased. To determine the effect of the Al2O3 content and basicity on the structure of the molten slag, Raman spectroscopy was performed on the slag sample, which was quenched from the high temperature with water. The Raman spectra showed that the fractions of the polymerization structural units decreased significantly as the basicity of the slag increased, resulting in a decrease in the apparent viscosity. However, Al2O3 acts as a network former in the slag system, thereby making the slag structure further polymerized and increasing the viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.G. King, JOM 57 (2005) 35–39.

    Article  Google Scholar 

  2. A.E.M. Warner, C.M. Díaz, A.D. Dalvi, P.J. Mackey, A.V. Tarasov, JOM 58 (2006) 11–20.

    Article  Google Scholar 

  3. M. Liu, X.W. Lv, E.G. Guo, P. Chen, Q.G. Yuan, ISIJ Int. 54 (2014) 1749–1754.

    Article  Google Scholar 

  4. G.M. Mudd, Ore Geol. Rev. 38 (2010) 9–26.

    Article  Google Scholar 

  5. J.B. Chen, J.H. Xu, Modern Mining 25 (2006) No. 8, 1–3.

    Google Scholar 

  6. S.W. Zhang, S.B. Xie, A.D. Xu, World Nonferrous Met. 11 (2003) 9–14.

    Google Scholar 

  7. X.W. Lv, C.G. Bai, S.P. He, Q.Y. Huang, ISIJ Int. 50 (2010) 380–385.

    Article  Google Scholar 

  8. C. Pan, C.G. Bai, X.W. Lv, L.M. Hu, T. Hu, Metal. Int. 16 (2011) 5–9.

    Google Scholar 

  9. E.N. Zevgolis, C. Zografidis, T. Perraki, E. Devlin, J. Therm. Anal. Calorim. 100 (2010) 133–139.

    Article  Google Scholar 

  10. I. Kobayashi, Y. Tanigaki, A. Uragami, Iron Steelmaker 28 (2001) No. 9, 19–22.

    Google Scholar 

  11. Z.H. Liu, X.B. Ma, D.Q. Zhu, Y.H. Li, Q.H. Li, J. Cent. South Univ. (Sci. Technol.) 42 (2011) 2905–2910.

    Google Scholar 

  12. G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, C.G. Bai, ISIJ Int. 55 (2015) 1367–1376.

    Article  Google Scholar 

  13. P. McMillan, Am. Miner. 69 (1984) 622–644.

    Google Scholar 

  14. K. Zheng, J. Liao, X. Wang, Z. Zhang, J. Non-Cryst. Solids 376 (2013) 209–215.

    Google Scholar 

  15. J.H. Park, Metall. Mater. Trans. B 44 (2013) 938–947.

    Article  Google Scholar 

  16. K.C. Mills, S. Sridhar, Ironmak. Steelmak. 26 (1999) 262–268.

    Article  Google Scholar 

  17. R. Roscoe, Br. J. Appl. Phys. 3 (1952) 267–269.

    Article  Google Scholar 

  18. H. Park, J.Y. Park, G.H. Kim, I. Sohn, Steel Res. Int. 83 (2012) 150–156.

    Article  Google Scholar 

  19. B.O. Mysen, Earth Sci. Rev. 27 (1990) 281–365.

    Article  Google Scholar 

  20. A. Fernández‐Jiménez, F. Puertas, I. Sobrados, J. Sanz, J. Am. Ceram. Soc. 86 (2003) 1389–1394.

    Article  Google Scholar 

  21. B.O. Mysen, L.W. Finger, D. Virgo, F.A. Seifert, Am. Miner. 67 (1982) 686–695.

    Google Scholar 

  22. B.O. Mysen, D. Virgo, F.A. Seifert, Rev. Geophys. 20 (1982) 353–383.

    Article  Google Scholar 

  23. P. McMillan, B. Piriou, J. Non-Cryst. Solids 55 (1983) 221–242.

    Article  Google Scholar 

  24. P.F. McMillan, B.T. Poe, P.H. Gillet, B. Reynard, Geochim. Cosmochim. Acta 58 (1994) 3653–3664.

    Article  Google Scholar 

  25. P. McMillan, B. Piriou, A. Navrotsky, Geochim. Cosmochim. Acta 46 (1982) 2021–2037.

    Article  Google Scholar 

  26. V.N. Bykov, A.A. Osipov, V.N. Anfilogov, Glass Phys. Chem. 29 (2003) 105–107.

    Article  Google Scholar 

  27. C. Huang, E.C. Behrman, J. Non-Cryst. Solids 128 (1991) 310–321.

    Article  Google Scholar 

  28. I. Daniel, P. Gillet, B.T. Poe, P.F. McMillan, Phys. Chem. Miner. 22 (1995) 74–86.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are especially grateful to the National Natural Science Foundation of China (Grant No. 51234010) and the Fundamental Research Funds for the Central Universities (Project Nos. 2018CDXYCL0018 and 2018CDPTCG0001/11) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-ming Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yf., Lv, Xm., Pang, Zd. et al. Effect of basicity and Al2O3 on viscosity of ferronickel smelting slag. J. Iron Steel Res. Int. 27, 1400–1406 (2020). https://doi.org/10.1007/s42243-020-00504-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00504-y

Keywords

Navigation