Skip to main content
Log in

Unbalanced classification method using least squares support vector machine with sparse strategy for steel surface defects with label noise

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Least squares support vector machine (LS-SVM) plays an important role in steel surface defects classification because of its high speed. However, the defect samples obtained from the real production line may be noise. LS-SVM suffers from the poor classification performance in the classification stage when there are noise samples. Thus, in the classification stage, it is necessary to design an effective algorithm to process the defects dataset obtained from the real production line. To this end, an adaptive weight function was employed to reduce the adverse effect of noise samples. Moreover, although LS-SVM offers fast speed, it still suffers from a high computational complexity if the number of training samples is large. The time for steel surface defects classification should be as short as possible. Therefore, a sparse strategy was adopted to prune the training samples. Finally, since the steel surface defects classification belongs to unbalanced data classification, LS-SVM algorithm is not applicable. Hence, the unbalanced data information was introduced to improve the classification performance. Comprehensively considering above-mentioned factors, an improved LS-SVM classification model was proposed, termed as ILS-SVM. Experimental results show that the new algorithm has the advantages of high speed and great anti-noise ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Pernkopf, Pattern Anal. Appl. 7 (2004) 333–342.

    Article  MathSciNet  Google Scholar 

  2. L.A.O. Martins, F.L.C. Pádua, P.E.A. Almeida, in: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, IEEE, Glendale, USA, 2010, pp. 1081–1086.

  3. A. Borselli, V. Colla, M. Vannucci, M. Veroli, in: International Conference on Fuzzy Systems, IEEE, Barcelona, Spain, 2010, pp. 1–6.

  4. Y.H. Yan, K.C. Song, Z.T. Xing, X.H. Feng, in: 2011 Third International Conference on Measuring Technology and Mechatronics Automation, IEEE, Shanghai, China, 2011, pp. 958–961.

  5. S.Y. Tian, K. Xu, Metals 7 (2017) 311.

    Article  Google Scholar 

  6. L. Yi, G.Y. Li, M.M. Jiang, Steel Res. Int. 88 (2017) 1600068.

    Article  Google Scholar 

  7. S.Y. Zhou, Y.P. Chen, D.L. Zhang, J.M. Xie, Y.F. Zhou, Mater. Technol. 51 (2017) 123–131.

    Google Scholar 

  8. M.X. Chu, X.P. Liu, R.F. Gong, L.M. Liu, Chemom. Intell. Lab. Syst. 176 (2018) 108–118.

    Article  Google Scholar 

  9. R.F. Gong, M.X. Chu, Y.H. Yang, Y. Feng, Chemom. Intell. Lab. Syst. 188 (2019) 70–78.

    Article  Google Scholar 

  10. D. He, K. Xu, P. Zhou, Comput. Ind. Eng. 128 (2019) 290–297.

    Article  Google Scholar 

  11. X.W. Zhang, Y.Q. Ding, Y.Y. Lv, A.Y. Shi, R.Y. Liang, Expert Systems with Applications 38 (2011) 5930–5939.

    Article  Google Scholar 

  12. H.J. Hu, Y.X. Li, M.F. Liu, W.H. Liang, Multimed. Tools Appl. 69 (2014) 199–216.

    Article  Google Scholar 

  13. D.Y. Cui, K.W. Xia, Mathematical Problems in Engineering 2017 (2017) Article ID 4257273. https://doi.org/10.1155/2017/4257273.

  14. J.A.K. Suykens, I. Vandewalle, Neural Process. Lett. 9 (1999) 293–300.

    Article  Google Scholar 

  15. X.J. Peng, D. Xu, Neurocomputing 99 (2013) 134–143.

    Article  Google Scholar 

  16. R.F. Gong, C.D. Wu, M.X. Chu, Chemom. Intell. Lab. Syst. 172 (2018) 109–117.

    Article  Google Scholar 

  17. Y.F. Ma, X. Liang, X.P. Zhou, Acta Autom. Sin. 43 (2017) 132–141.

    Google Scholar 

  18. Z.X. Xue, S.Y. Liu, W.L. Liu, J. Syst. Simul. 21 (2009) 4324–4327.

    Google Scholar 

  19. K.N. Plataniotis, D. Androutsos, A.N. Venetsanopoulos, Proceedings of the IEEE 87 (1999) 1601–1622.

    Article  Google Scholar 

  20. M.X. Chu, A.N. Wang, R.F. Gong, Acta Electronica Sinica 42 (2013) 998–1003.

    Google Scholar 

  21. P. Karsmakers, K. Pelckmans, K. De Branbanter, H.V. Hamme, J.A.K. Suykens, Mach. Learn. 85 (2011) 109–148.

    Article  MathSciNet  Google Scholar 

  22. L.X. Yang, S.Y. Yang, R. Zhang, H.H. Jin, Neurocomputing 131 (2014) 77–86.

    Article  Google Scholar 

  23. K.C. Song, Y.H. Yan, Appl. Surf. Sci. 285 (2013) 858–864.

    Article  Google Scholar 

  24. Y. He, K.C. Song, H.W. Dong, Y.H. Yan, Opt. Lasers Eng. 122 (2019) 294–302.

    Article  Google Scholar 

  25. J. Demšar, J. Mach. Learn. Res. 7 (2006) 1–30.

    MathSciNet  Google Scholar 

  26. C.E. Douglas, F.A. Michael, Commun. Statist. Theor. Meth. 20 (1991) 127–139.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is sponsored by the Natural Science Foundation of Liaoning Province, China (20180550067), Liaoning Province Ministry of Education Scientific Study Project (2020LNZD06 and 2017LNQN11) and University of Science and Technology Liaoning Talent Project Grants (601011507-20 and 601013360-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-xiang Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Lm., Chu, Mx., Gong, Rf. et al. Unbalanced classification method using least squares support vector machine with sparse strategy for steel surface defects with label noise. J. Iron Steel Res. Int. 27, 1407–1419 (2020). https://doi.org/10.1007/s42243-020-00499-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00499-6

Keywords

Navigation