Skip to main content
Log in

Modelling and numerical simulation of isothermal oxidation of an individual magnetite pellet based on computational fluid dynamics

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A mathematical model based on the computational fluid dynamics method, heat and mass transfer in porous media and the unreacted shrinking core model for the oxidation reaction of an individual magnetite pellet during preheating was established. The commercial software COMSOL Multiphysics was used to simulate the change in the oxidation degree of the pellet at different temperatures and oxygen concentrations, and the simulated results were compared with the experimental results. The model considered the influence of the exothermic heat of the reaction, and the enthalpy change was added to calculate the heat released by the oxidation. The results show that the oxidation rate on the surface of the pellet is much faster than that of the inside of the pellet. Temperature and oxygen concentration have great influence on the pellet oxidation model. Meanwhile, the exothermic calculation results show that there is a non-isothermal phenomenon inside the pellet, which leads to an increase in temperature inside the single pellet. Under the preheating condition of 873–1273 K (20% oxygen content), the heat released by the pellet oxidation reaction in a chain grate is 7.8 × 106–10.8 × 106 kJ/h, which is very large and needs to be considered in the magnetite pellet oxidation modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Barati, Int. J. Miner. Process. 89 (2008) 30–39

    Article  Google Scholar 

  2. F. Zhang, D.Q. Zhu, J. Pan, Z.Q. Guo, M.J. Xu, J. Iron Steel Res. Int. 27 (2020) 770–781.

    Article  Google Scholar 

  3. F.Q. Gu, Y.B. Zhang, G.H. Li, Q. Zhong, J. Luo, Z.J. Su, M.J. Rao, Z.W. Peng, T. Jiang, J. Iron Steel Res. Int. (2020). https://doi.org/10.1007/s42243-020-00376-2.

    Article  Google Scholar 

  4. C.Y.C. Jonsson, J. Stjernberg, H. Wiinikka, B. Lindblom, D. Boström, M. Öhman, Energy Fuels 27 (2013) 6159–6170.

    Article  Google Scholar 

  5. S.P.E. Forsmo, S.E. Forsmo, P.O. Samskog, B.M.T. Björkman, Powder Technol. 183 (2008) 247–259.

    Article  Google Scholar 

  6. J.A. Thurlby, Metall. Trans. B 19 (1988) 103–112.

    Article  Google Scholar 

  7. G.H. Han, T. Jiang, Y.B. Zhang, Y.F. Huang, G.H. Li, J. Iron Steel Res. Int. 18 (2011) No. 8, 14–19.

    Article  Google Scholar 

  8. M. Kazemi, M.S. Pour, D. Sichen, Metall. Mater. Trans. B 48 (2017) 1114–1122.

    Article  Google Scholar 

  9. L.X. Yang, E. Matthews, ISIJ Int. 37 (1997) 854–861.

    Article  Google Scholar 

  10. R.A. Davis, D.J. Englund, Can. J. Chem. Eng. 81 (2003) 86–93.

    Article  Google Scholar 

  11. J. Szekely, J.W. Evans, Chem. Eng. Sci. 25 (1970) 1091–1107.

    Article  Google Scholar 

  12. J. Szekely, J.W. Evans, Metall. Trans. 2 (1971) 1691–1698.

    Article  Google Scholar 

  13. R. Beheshti, J. Moosberg-Bustnes, R.E. Aune, in: The Minerals, Metals & Materials Society (Eds.), TMS 2014: 143rd Annual Meeting & Exhibition, Springer International Publishing, Cham, Switzerland, 2016, pp. 495–502.

  14. T. Melchiori, P. Canu, Ind. Eng. Chem. Res. 53 (2014) 8980–8995.

    Article  Google Scholar 

  15. J. Szekely, J.W. Evans, Chem Eng Sci. 26 (1971) 1901–1913.

    Article  Google Scholar 

  16. H. Ahn, S. Choi, Comput. Chem. Eng. 97 (2017) 13–26.

    Article  Google Scholar 

  17. P.C. Pistorius, M. Tang, in: T.P. Battle, J.P. Downey, L.D. May, B. Davis, N.R. Neelameggham, S. Sanchez-Segado, P.C. Pistorius (Eds.), Drying, Roasting, and Calcining of Minerals, Springer International Publishing, Cham, Switzerland, 2016, pp. 203–208.

    Google Scholar 

  18. S.M.M. Nouri, H. Ale Ebrahim, E. Jamshidi, Chem. Eng. J. 166 (2011) 704–709.

  19. M.S. Valipour, M.Y.M. Hashemi,Y. Saboohi, Adv. Powder Technol. 17 (2006) 277–295.

    Article  Google Scholar 

  20. D. Papanastassiou, G. Bitsianes, Metall. Trans. 4 (1973) 487–496.

    Article  Google Scholar 

  21. H.J. Cho, M. Tang, P.C. Pistorius, Metall. Mater. Trans. B 45 (2014) 1213–1220.

    Article  Google Scholar 

  22. R.Q. Liang, S. Yang, F.S. Yan, J.C. He, J. Iron Steel Res. Int. 20 (2013) No. 9, 16–20.

    Article  Google Scholar 

  23. X. Chen, J. Dai, Z. Luo, Particuology 11 (2013) 703–714.

    Article  Google Scholar 

  24. X.B. Chen, P. Yu, S.H. Winoto, H.T. Low, Int. J. Numer. Method. H. 19 (2009) 223–241.

    Article  Google Scholar 

  25. A. Amiri, K. Vafai, Int. J. Heat Mass Transfer 41 (1998) 4259–4279.

    Article  Google Scholar 

  26. J.B.Y. Bachmat, Theory and applications of transport in porous media, Springer, 1990.

  27. Y. Zhang, J. Feng, J. Xu, Y. Zhang, J. Yang, Energy Convers. Manage. 52 (2011) 2064–2071.

    Article  Google Scholar 

  28. D. Papanastassiou, G. Bitsianes, Metall. Trans. 4 (1973) 477–486.

    Article  Google Scholar 

  29. H.Q. Zhang, J.T. Fu, J. Pan, F. Zhang, Z.Q. Guo, J. Wuhan Univ. Technol. 33 (2018) 1516–1523.

    Article  Google Scholar 

  30. M. Tang, H.J. Cho, P.C. Pistorius, Metall. Mater. Trans. B 45 (2014) 1304–1314.

    Article  Google Scholar 

  31. H.Q. Zhang, J.T. Fu, Int. J. Miner. Metall. Mater. 24 (2017) 603–610.

    Article  Google Scholar 

  32. D. Zhu, C. Yang, J. Pan, X. Li, Metall. Mater. Trans. B 47 (2016) 2919–2930.

    Article  Google Scholar 

  33. Y.P. Song, W. Dong, X.Q. Peng, J.Z. Zhang, S.J. Pan, Metal Materials and Metallurgy Engineering 40 (2012) No. 4, 10–14.

    Google Scholar 

  34. R.S. Wang, Sintering and Pelletizing (1994) No. 6, 48–52.

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (51675245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-quan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Z., Zhou, F., Sun, Y. et al. Modelling and numerical simulation of isothermal oxidation of an individual magnetite pellet based on computational fluid dynamics. J. Iron Steel Res. Int. 28, 799–808 (2021). https://doi.org/10.1007/s42243-020-00485-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00485-y

Keywords

Navigation