Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of in situ (TiC + SiC)/FeCrCoNi high entropy alloy matrix composites

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In situ (TiC + SiC) particles (5 vol.% and 10 vol.%, respectively)-reinforced FeCrCoNi high entropy alloy matrix composites were fabricated via vacuum inductive melting method, with equal volume fractions of TiC and SiC particles. X-ray diffraction, scanning electron microscope and energy diffraction spectrum were employed to analyze the microstructure and composition of the samples. The results manifested that the FeCrCoNi matrix is composed of FCC phase, and the in situ particles are homogeneously scattered in the matrix. The presence of reinforcements augmented the ultimate tensile strength from 452 to 783 MPa, and raised the yield strength from 162 to 466 MPa at room temperature, whereas the elongation to fracture was reduced from 70.6% to 28.6%. All the tensile fracture surfaces consisted of numerous tiny dimples, indicating that the composites exhibited ductile fracture. Furthermore, the enhancement of strength ascribes to a combination of thermal mismatch strengthening, load-bearing effect, grain refinement, Orowan strengthening and solid solution strengthening effect, which contribute about 58.0%, 2.4%, 12.3%, 11.1% and 16.2% to the improvement of yield tensile strength, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299–303.

    Google Scholar 

  2. J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103 (2007) 41–46.

    Google Scholar 

  3. J.W. Yeh, Ann. Chim. Sci. Mater. 1 (2006) 633–648.

    Google Scholar 

  4. H. Wu, S.R. Huang, C.Y. Zhu, H.G. Zhu, Z.H. Xie, Mater. Lett. 257 (2019) 126729.

    Google Scholar 

  5. X.R. Zhang, J. Guo, X.H. Zhang, Y.P. Song, Z.X. Li, X.F. Xing, D. Kong, J. Alloy. Compd. 775 (2019) 565–570.

    Google Scholar 

  6. D. Yim, P. Sathiyamoorthi, S.J. Hong, H.S. Kim, J. Alloy. Compd. 781 (2019) 389–396.

    Google Scholar 

  7. C.M. Barr, J.E. Nathaniel, K.A. Unocic, J.P. Liu, Y. Zhang, Y.Q. Wang, M.L. Taheri, Scripta Mater. 156 (2018) 80–84.

    Google Scholar 

  8. A. Heczel, M. Kawasaki, J.L. Lábár, J. Jang, T.G. Langdon, J. Gubicza, J. Alloy. Compd. 711 (2017) 143–154.

    Google Scholar 

  9. X.L. Shi, J. Yao, Z.S. Xu, W.Z. Zhai, S.Y. Song, M. Wang, Q.X. Zhang, Mater. Des. 53 (2014) 620–633.

    Google Scholar 

  10. W.B. Duan, Y.H. Sun, C.H. Liu, S.H. Liu, Y.Y. Li, C.H. Ding, G. Ran, L. Yu, Tribol. Int. 95 (2016) 324–332.

    Google Scholar 

  11. J. Chen, X.Y. Zhou, W.L. Wang, B. Liu, Y.K. Lv, W. Yang, D.P. Xu, Y. Liu, J. Alloy. Compd. 760 (2018) 15–30.

    Google Scholar 

  12. J.X. Hou, M. Zhang, H.J. Yang, J.W. Qiao, Y.C. Wu, Mater. Lett. 238 (2019) 258–260.

    Google Scholar 

  13. H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee, M. Andrzejczuk, M. Lewandowska, T.G. Langdon, Mater. Sci. Eng. A 725 (2018) 196–206.

    Google Scholar 

  14. A.J. Zhang, J.S. Han, B. Su, J.H. Meng, J. Alloy. Compd. 725 (2017) 700–710.

    Google Scholar 

  15. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloy. Compd. 488 (2009) 57–64.

    Google Scholar 

  16. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Acta Mater. 60 (2012) 5723–5734.

    Google Scholar 

  17. B.L. Zhang, Y. Zhang, S.M. Guo, J. Mater. Sci. 53 (2018) 14729–14738.

    Google Scholar 

  18. B. Gludovatz, E.P. George, R.O. Ritchie, JOM 67 (2015) 2262–2270.

    Google Scholar 

  19. M. Vaidya, S. Trubel, B.S. Murty, G. Wildea, S.V. Divinskia, J. Alloy. Compd. 668 (2016) 994–1001.

    Google Scholar 

  20. X.T. Song, R.P. Guo, Z. Wang, X.J. Wang, H.J. Yang, J.W. Qiao, L.N. Han, P.K. Liaw, Y.C. Wu, Intermetallics 114 (2019) 106591.

    Google Scholar 

  21. J.X Hou, X.H. Shi, J.W. Qiao, Y. Zhang, P.K. Liaw, Y.C. Wu, Mater. Des. 180 (2019) 107910.

    Google Scholar 

  22. F. He, Z.J. Wang, Q.F. Wu, J.J. Li, J.C. Wang, C.T. Liu, Scripta Mater. 126 (2017) 15–19.

    Google Scholar 

  23. J.P. Liu, X.X. Guo, Q.Y. Lin, Z.B. He, X.H. An, L.F. Li, P.K. Liaw, X.Z. Liao, L.P. Yu, J.P. Lin, L. Xie, J.L. Ren, Y. Zhang, Sci. China Mater. 62 (2019) 853–863.

    Google Scholar 

  24. X.F. Du, T. Gao, G.L. Liu, X.F. Liu, J. Alloy. Compd. 695 (2017) 1–8.

    Google Scholar 

  25. X.D. Sun, H.G. Zhu, J.L. Li, J.W. Huang, Z.H. Xie, Mater. Chem. Phys. 220 (2018) 449–459.

    Google Scholar 

  26. Y. Yu, W.M. Liu, T.B. Zhang, J.S. Li, J. Wang, H.C. Kou, J. Li, Metall. Mater. Trans. A 45 (2014) 201–207.

    Google Scholar 

  27. L. Rogal, D. Kalita, A. Tarasek, P. Bobrowski, F. Czerwinski, J. Alloy. Compd. 708 (2017) 344–352.

    Google Scholar 

  28. W. Fang, H.Y. Yu, R.B. Chang, X. Zhang, P.G. Ji, B.X. Liu, J. Li, X.H. Qu, Y. Liu, F.X. Yin, Mater. Chem. Phys. 238 (2019) 121897.

    Google Scholar 

  29. Q.C. Fan, B.S. Li, Y. Zhang, Mater. Sci. Eng. A 598 (2014) 244–250.

    Google Scholar 

  30. J.C. Li, X.X. Zhang, L. Geng, Composit. Part A Appl. Sci. Manufact. 121 (2019) 487–498.

    Google Scholar 

  31. G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, E.P. George, J. Alloy. Compd. 746 (2018) 244–255.

    Google Scholar 

  32. Y.Q. Wang, B. Liu, K. Yan, M.S. Wang, S. Kabra, Y.L. Chiu, D. Dye, P.D. Lee, Y. Liu, B. Cai, Acta Mater. 154 (2018) 79–89.

    Google Scholar 

  33. X.Z. Zhang, T.J. Chen, Mater. Sci. Eng. A 696 (2017) 466–477.

    Google Scholar 

  34. D.B. Miraclea, O.N. Senkov, Acta Mater. 122 (2017) 448–511.

    Google Scholar 

  35. H. Wu, S.R. Huang, H. Qiu, H.G. Zhu, Z.H. Xie, Sci. Rep. 9 (2019) 16356.

    Google Scholar 

  36. H. Li, X.M. Wang, L.H. Chai, H. Wang, Z. Chen, Z. Xiang, T. Jin, Mater. Sci. Eng. A 720 (2018) 60–68.

    Google Scholar 

  37. H. Cheng, W. Chen, X.Q. Liu, Q. Tang, Y. Xie, P. Dai, Mater. Sci. Eng. A 719 (2018) 192–198.

    Google Scholar 

  38. S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, N. Tsuji, Acta Mater. 171 (2019) 201–215.

    Google Scholar 

  39. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scripta Mater. 68 (2013) 526–529.

    Google Scholar 

  40. P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.V. Kottada, Mater. Des. 134 (2017) 426–433.

    Google Scholar 

  41. S. Amirkhanlou, M. Rahimian, M. Ketabchi, N. Parvin, P. Yaghinali, F. Carreno, Metall. Mater. Trans. A 47 (2016) 5136–5145.

    Google Scholar 

  42. X.Z. Zhang, T.J. Chen, Y.H. Qin, Mater. Des. 99 (2016) 182–192.

    Google Scholar 

  43. Y.K. Kim, J.H. Choe, K.A. Lee, J. Alloy. Compd. 805 (2019) 680–691.

    Google Scholar 

  44. X. Liu, L. Zhang, Y. Xu, Appl. Phys. A 123 (2017) 567.

    Google Scholar 

  45. C.R. LaRosa, M. Shih, C. Varvenne, M. Ghazisaeidi, Mater. Charact. 151 (2019) 310–317.

    Google Scholar 

  46. X.L. Ding, Y.Z. Zhan, H.Q. Tang, JOM 71 (2019) 3473–3480.

    Google Scholar 

  47. J.W. Wan, B. Liu, C.T. Liu, Y. Liu, Intermetallics 102 (2018) 58–64.

    Google Scholar 

Download references

Acknowledgements

This paper was funded by the National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201910288094Z). This work was also supported by the National Natural Science Foundation of China (51571118, 51371098) and Jiangsu Province Science and Technology Plan Project (BE2018753/KJ185629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-guo Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yl., Zhao, Y., Shen, L. et al. Microstructure and mechanical properties of in situ (TiC + SiC)/FeCrCoNi high entropy alloy matrix composites. J. Iron Steel Res. Int. 28, 496–504 (2021). https://doi.org/10.1007/s42243-020-00472-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00472-3

Keywords

Navigation