Skip to main content
Log in

Recovery of iron from copper slag via modified roasting in CO–CO2 mixed gas and magnetic separation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A novel technology, modified roasting in CO–CO2 mixed gas and magnetic separation, was presented to recover iron from copper slag. The effects of various parameters such as dosage of flux (CaO), gas flowrate of CO and CO2, roasting temperature, roasting time, particle size of modified slag and magnetic flux density on the oxidized modification and magnetic separation were investigated by comparison of the X-ray diffraction patterns and iron recovery ratio. The optimum conditions for recovering iron by oxidizing roasting and magnetic separation are as follows: calcium oxide content of 25 wt.%, mixed gas flow rates of CO2 and CO of 180 and 20 mL/min, oxidizing roasting at 1323 K for 2 h, grinding the modified slag to 38.5–25.0 μm and magnetic separation at 170 mT. The mineralogical and microstructural characteristics of modified slag revealed that the iron-bearing minerals in the copper slag were oxidized, the generated magnetite grew into large particles, and the silicate in copper slag was combined with calcium oxide to form calcium silicate. Finally, the iron-bearing concentrate with an iron grade of 54.79% and iron recovery ratio of 80.14% was effectively obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C.J. Shi, C. Meyer, A. Behnood, Resour. Conserv. Recycl. 52 (2008) 1115–1120.

    Article  Google Scholar 

  2. B. Gorai, R.K. Jana, Resour. Conserv. Recycl. 39 (2003) 299–313.

    Article  Google Scholar 

  3. H.T. Shen, E. Forssberg, Waste Manag. 23 (2003) 933–949.

    Article  Google Scholar 

  4. P.K. Gbor, V. Mokri, C.Q. Jia, J. Environ. Sci. Health Part A 35 (2000) 147–167.

    Article  Google Scholar 

  5. M. Najimi, A.R. Pourkhorshidi, Mag. Concr. Res. 63 (2011) 605–615.

    Article  Google Scholar 

  6. H.Y. Cao, N.X. Fu, C.G. Wang, L. Zhang, F.S. Xia, Z.T. Sui, N.X. Feng, Multipurp. Util. Min. Resour. (2009) No. 2, 8–10.

  7. U. Brinkmann, W. Laqua, Phys. Chem. Miner. 12 (1985) 283–290.

    Article  Google Scholar 

  8. J.L. Zeng, K.M. Xiao, Nonferrous Met. Sci. Eng. 2 (2011) No. 6, 71–73.

    Google Scholar 

  9. T.J. Veasey, J. Process Mech. Eng. 211 (1997) 61–64.

    Article  Google Scholar 

  10. Z. Cao, T. Sun, X. Xue, Z. Liu, Minerals 6 (2016) 119.

    Article  Google Scholar 

  11. B.S. Kim, S.K. Jo, D. Shin, J.C. Lee, S.B. Jeong, Int. J. Miner. Process. 124 (2013) 124–127.

    Article  Google Scholar 

  12. R.M. Jiao, X. Peng, C.Y. Wang, B.Z. Ma, Y.Q. Chen, Int. J. Miner. Metall. Mater. 24 (2017) 974–982.

    Article  Google Scholar 

  13. Y.B. Ma, X.Y. Du, Y.Y. Shen, G.Z. Li, M. Li, Metals 7 (2017) 321.

    Article  Google Scholar 

  14. Y. Fan, E. Shibata, A. Iizuka, T. Nakamura, Mater. Trans. 55 (2014) 958–963.

    Article  Google Scholar 

  15. Y. Fan, E. Shibata, A. Iizuka, T. Nakamura, Metall. Mater. Trans. B 46 (2015) 2158–2164.

    Article  Google Scholar 

  16. Y. Fan, E. Shibata, A. Iizuka, T. Nakamura, Metall. Mater. Trans. B 47 (2016) 2754–2760.

    Article  Google Scholar 

  17. Z.Q. Guo, D.Q. Zhu, P. Jian, T.J. Wu, F. Zhang, Metals 6 (2016) 86.

    Article  Google Scholar 

  18. Z.Q. Guo, D.Q. Zhu, P. Jian, F. Zhang, JOM 68 (2016) 2341–2348.

    Article  Google Scholar 

  19. X.J. Hu, T. Zhang, H.Y. Yan, H. Matsuura, F. Tsukihashi, K.C. Chou, ISIJ Int. 52 (2012) 1529–1534.

    Article  Google Scholar 

  20. J.H. Heo, B.S. Kim, J.H. Park, Metall. Mater. Trans. B 44 (2013) 1352–1363.

    Article  Google Scholar 

  21. J.H. Hu, H. Wang, L.M. Zhao, L. Li, H.L. Liu, J. Saf. Environ. 11 (2011) No. 2, 90–93.

    Google Scholar 

  22. D. Durinck, F. Engström, S. Arnout, J. Heulens, P.T. Jones, B. Björkman, B. Blanpain, P. Wollants, Resour. Conserv. Recycl. 52 (2008) 1121–1131.

    Article  Google Scholar 

  23. Z.Q. Guo, D.Q. Zhu, J. Pan, F. Zhang, J. Clean. Prod. 187 (2018) 910–922.

    Article  Google Scholar 

  24. J.R. Garcia, M. Suarez, C.G. Guarido, J. Rodriguez, Anal. Chem. 56 (1984) 193–196.

    Article  Google Scholar 

  25. E.T. Turkdogan, J.V. Vinters, Metall. Trans. 3 (1972) 1561–1574.

    Article  Google Scholar 

  26. Y. Sasaki, S. Hara, D.R. Gaskell, G.R. Belton, Metall. Trans. B 15 (1984) 563–571.

    Article  Google Scholar 

  27. Y. Li, J.A. Lucas, G.M. Evans, I.P. Ratchey, G.R. Belton, Metall. Mater. Trans. B 31 (2000) 1049–1057.

    Article  Google Scholar 

  28. H.R. Fernandes, A. Gaddam, D.U. Tulyaganov, J.M.F. Ferreira, J. Non-Cryst. Solids 406 (2014) 54–61.

    Google Scholar 

  29. Z.H. Yang, Z.H. Ma, Steel Res. Int. 88 (2017) 1600145.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to National Natural Science Foundation of China (Grant No. 51774154) and the Jiangxi Natural Science Foundation (Grant No. 20151BAB206029) for the financial support for this research. And we also thank the Testing Center of Jiangxi University of Science and Technology for testing of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-guo Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Pg., Liu, Js., Xiao, Yy. et al. Recovery of iron from copper slag via modified roasting in CO–CO2 mixed gas and magnetic separation. J. Iron Steel Res. Int. 27, 796–806 (2020). https://doi.org/10.1007/s42243-020-00413-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00413-0

Keywords

Navigation