Skip to main content
Log in

Effects of long-term aging on microstructure and properties of a tungsten bearing heat-resistant alloy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effects of long-term aging at 700 and 750 °C on microstructure and mechanical properties of a new developed tungsten bearing heat-resistant alloy used for advanced ultra-supercritical power plant was investigated both experimentally and thermodynamically. Experimental results showed that the mechanical properties maintained excellent stability after long-term aging at 700 °C for 10,000 h, while the impact absorbing energy decreased sharply after 1000-h aging and then kept constant till 10,000 h. The main precipitates after long-term aging at 700 and 750 °C were M23C6, MC and homogeneous γ′-phases. The mass fraction of M23C6 carbides increased with increasing aging time, and M23C6 carbides precipitated in shape of chains and lamellas on grain boundaries. The slight decrease in MC carbides during aging may be due to degradation reaction. The weight fraction of γ′-phase increased with the aging time, and then changed little after 5000 h; γ′-phase exhibited excellent microstructure stability and low coarsening rate during long-term aging at 700 °C. However, the coarsening rate of γ′-phase was much higher at 750 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.Y. Chi, H.Y. Yu, X.S. Xie, World Iron & Steel 13 (2013) No. 2, 42–59.

    Google Scholar 

  2. Z.D. Liu, S.C. Cheng, G.B. Tang, H.S. Bao, G. Yang, Y. Gan, Iron and Steel 46 (2011) No. 3, 1–5.

    Google Scholar 

  3. A. Fujio, H. Kutsumi, H. Haruyama, H. Okubo, Corros. Sci. 114 (2017) 1–9.

    Article  Google Scholar 

  4. A. Kermanpur, M. Mehrara, N. Varahram, P. Davami, Mater. Sci. Technol. 24 (2008) 100–106.

    Article  Google Scholar 

  5. S.L. Semiatin, P.N. Fagin, M.G. Glavicic, D. Raabe, Scripta Mater. 50 (2004) 625–629.

    Article  Google Scholar 

  6. A. Fujio, K. Torsten-Ulf, R. Viswanathan, Creep-resistant steels, North America, CRC Press, USA, 2008.

    Google Scholar 

  7. A. Lasalmonie, Intermetallics 14 (2006) 1123–1129.

    Article  Google Scholar 

  8. Y. Fukuda, Mater. Sci. Forum 696 (2011) 236–241.

    Article  Google Scholar 

  9. L.X. Yu, Y.R. Sun, W.R. Sun, X.F. Sun, S.R. Guo, Z.Q. Hu, Mater. Sci. Eng. A 527 (2010) 911–916.

    Article  Google Scholar 

  10. D. Raynor, J.M. Silcock, Met. Sci. J. 4 (1970) 121–130.

    Article  Google Scholar 

  11. D.L. Klarstrom, L.M. Pike, V.R. Ishwar, Proced. Eng. 55 (2013) 221–225.

    Article  Google Scholar 

  12. M. Götting, J. Rösle, Comput. Struct. 85 (2007) 225–232.

    Article  Google Scholar 

  13. W. Sun, X.Z. Qin, J.T. Guo, L.H. Lou, L.Z. Zhou, Mater. Des. 69 (2015) 81–88.

    Article  Google Scholar 

  14. L. Wang, G. Yang, T. Lei, S.B. Yin, L. Wang, Chin. J. Rare Metals 40 (2016) No. 2, 117–124.

    Google Scholar 

  15. Z.H. Yao, M.C. Zhang, J.X. Dong, Metall. Mater. Trans. A 44 (2013) 3084–3098.

    Article  Google Scholar 

  16. X.Y. Gao, R. Hu, G.L. Luo, Scripta Mater. 134 (2017) 15–19.

    Article  Google Scholar 

  17. T.B. Gibbons, Trans. Ind. Inst. Met. 66 (2013) 631–640.

    Article  Google Scholar 

  18. C.J. Park, M.K. Ahn, H.S. Kwon, Mater. Sci. Eng. A 418 (2006) 211–217.

    Article  Google Scholar 

  19. Z.H. Gong, G. Yang, H.S. Bao, H.F. Yin, Chin. J. Rare Metels 42 (2019) 1281–1287.

    Google Scholar 

  20. J. Wang, L.Z. Zhou, X.Z. Qin, L.Y. Sheng, J.S. Hou, J.T. Guo, Mater. Sci. Eng. A 553 (2012) 14–21.

    Article  Google Scholar 

  21. G.P. Sabol, R. Stickler, Phys. Status. Solid. B 35 (1969) 11–52.

    Article  Google Scholar 

  22. G. Lvov, V.I. Levit, M.J. Kaufman, Metall. Mater. Trans. A 35 (2004) 1669–1679.

    Article  Google Scholar 

  23. C. Wagner, Z. Elek, Tro. chem. 65 (1961) 581–591. https://doi.org/10.1002/bbpc.19610650704.

  24. J. Oh, I. Choi, Y. Kim, B. Yoo, J. Jang, Mater. Sci. Eng. A 528 (2011) 6121–6127.

    Article  Google Scholar 

  25. G.B. Viswanathan, R. Shi, A. Genc, V.A. Vorontsov, L. Kovarik, C.M.F. Rae, M.J. Mills, Scripta Mater. 94 (2015) 5–8.

    Article  Google Scholar 

  26. H.F. Li, F. Ye, J. Zhao, T.S. Cao, F.H. Xu, Q.S. Xu, Y. Wang, C.Q. Cheng, X.H. Min, Mater. Sci. Eng. A 714 (2018) 172–178.

    Article  Google Scholar 

  27. L. Wang, Study on heat resistant alloys used for turbine blade in 700 °C-750 °C ultra-supercritical power plant, Central Iron and Steel Institute, Beijing, China, 2017.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program, China (No. 2017YFB0305203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-sheng Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Hs., Yang, G., Chen, Zz. et al. Effects of long-term aging on microstructure and properties of a tungsten bearing heat-resistant alloy. J. Iron Steel Res. Int. 27, 477–487 (2020). https://doi.org/10.1007/s42243-020-00391-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00391-3

Keywords

Navigation