Skip to main content
Log in

Reaction kinetics during direct alloying of manganese ore cored wire

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to increase the reaction rates between the molten steel and the slag and cut down the reduction time when the top slag of manganese ore is added into the molten steel, a method of directly alloying manganese ore has been experimented in a 500-kg induction furnace. The results show that the manganese yield is greater than 90% when the wire feeding method is used. The manganese yield is 43.26% within 1 min. In contrast, the manganese yield for the top-slag adding process is only 10.98% for the same duration. The mass transfer rate of the manganese is greater in the molten steel than in the slag, and the limiting factor is the mass transfer rate of the manganese in the slag in the period of 10−30 min. The slag composition area is closer to the area of high melting point for the wire feeding method than for the top-slag adding process. During the slagging process, refining slag composed of CaO and SiO2 is formed after 15 min; after 25−30 min, refining slag with a high basicity is formed and consists of CaO, SiO2 and Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. Wu, S.F. Dai, P. Wang, D. Ma, B. Ni, Ironmak. Steelmak. 46 (2019) 469−476.

    Article  Google Scholar 

  2. W. Wu, S.F. Dai, Y. Liu, J. Iron Steel Res. Int. 24 (2017) 908–915.

    Article  Google Scholar 

  3. W. Wu, J.J. Gao, J.Q. Zeng, Y.H. Qi, J.C. Wang, X.D. Zhang, J. Iron Steel Res. Int. 23 (2016) 210–219.

    Article  Google Scholar 

  4. L.N. Guo, J. Chen, M. Zhang, M. Liang, J. Iron Steel Res. Int. 19 (2012) No. 5, 1–8.

    Article  Google Scholar 

  5. J. Chen, P.F. Tian, X.A. Song, N. Li, J.X. Zhou, J. Iron Steel Res. Int. 17 (2010) No. 3, 13–20.

    Article  Google Scholar 

  6. S.F. Dai , W. Wu, D. Ma, X.D. Zhang, P. Wang, Iron and Steel 52 (2017) No. 8, 35–42.

    Google Scholar 

  7. T. Shimoo, S. Ando, H. Kimura, J. Jpn. Inst. Met. 48 (1984) 285–292.

    Article  Google Scholar 

  8. T. Shimoo, S. Ando, H. Kimura, J. Jpn. Inst. Met. 48 (1984) 922–929.

    Article  Google Scholar 

  9. K.D. Xu, G.C. Jiang, W.Z. Ding, L.P. Gu, S.Q. Guo, B.X. Zhao, ISIJ Int. 33 (1993) 104–108.

    Article  Google Scholar 

  10. M. Ashizuka, A. Moribe, K. Sawamura, Tetsu-to-Hagane 61 (1975) 36–45.

    Article  Google Scholar 

  11. D.Y. Kim, S.M. Jung, ISIJ Int. 56 (2016) 71–77.

    Article  Google Scholar 

  12. N. Shinozaki, K. Ishido, K. Mori, Y. Kawai, Tetsu-to-Hagane 70 (1984) 73–80.

    Article  Google Scholar 

  13. R. Kononov, O. Ostrovski, S. Ganguly, Metall. Mater. Trans. B 39 (2008) 662–668.

    Article  Google Scholar 

  14. N. Anacleto, O. Ostrovski, S. Ganguly, ISIJ Int. 44 (2004) 1615–1622.

    Article  Google Scholar 

  15. O.I. Ostrovski, T.J.M. Webb, ISIJ Int. 35 (1995) 1331–1339.

    Article  Google Scholar 

  16. S.F. Dai, W. Wu, X.D. Zhang, P. Wang, China Metallurgy 27 (2017) No. 1, 12–18.

    Google Scholar 

  17. W. Wu, P. Wang, L. Lin, S.F. Dai, High Temperature Materials and Processes 37 (2018) 741–747.

    Article  Google Scholar 

  18. C.F. Zhang, J.B. Chang, S.W. Li, Z.J. Han, D.G. Ma, S.X. Liu, Y.B. Xiang, Steelmaking 29 (2013) No. 6, 12–14.

    Google Scholar 

  19. C.F. Lv, D.L. Shang, Q. Sun, L. Kang, Z.Y. Qi, Steelmaking 31 (2015) No. 1, 40–43.

    Google Scholar 

  20. T. Takaoka, I. Sumi, Y. Kikuchi, Y. Kawai, ISIJ Int. 33 (1993) 98–103.

    Article  Google Scholar 

  21. J. Safarian, Ø. Grong, L. Kolbeinsen, S.E. Olsen, ISIJ Int. 46 (2006) 1120–1129.

    Article  Google Scholar 

  22. T. Matsuo, S. Fukagawa, T. Ikeda, Tetsu-to-Hagane 76 (1990) 1831–1838.

    Article  Google Scholar 

  23. O.A. El Hady, A.E. Amer, I.S. El Mahallawi, Y.S. Shash, Mater. Sci. Forum 561–565 (2007) 85–89.

    Article  Google Scholar 

  24. S.M. Jung, C.H. Rhee, D.J. Min, ISIJ Int. 42 (2002) 63–70.

    Article  Google Scholar 

  25. E.T. Turkdogan, Fundamentals of steelmaking, The Institute of Materials Publishers, London, UK, 1996.

    Google Scholar 

  26. A. Sobandi, H.G. Katayama, T. Momono, ISIJ Int. 38 (1998) 953–958.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by the National Key R&D Program (2017YFB0304000) and the Beijing Natural Science Foundation (2172057) in China, the State Key Laboratory of Refractories and Metallurgy Foundation (G201804) and the National Natural Science Foundation of China (51704080, 51874102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Gao, Q., Zhang, B. et al. Reaction kinetics during direct alloying of manganese ore cored wire. J. Iron Steel Res. Int. 27, 282–294 (2020). https://doi.org/10.1007/s42243-020-00363-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00363-7

Keywords

Navigation