Skip to main content
Log in

Crystallization behavior of blast-furnace slag by single hot thermocouple technique

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The crystallization behavior of blast-furnace slag under isothermal and continuous-cooling conditions was studied using the single hot thermocouple technique. The crystallization phases were obtained using FactSage software and X-ray diffractometry. The crystallization kinetic parameters were calculated by combining these results with the Johnson–Mehl–Avrami model. Under isothermal conditions, the shortest crystallization incubation time was 24 and 18 s when the temperatures were 1300 and 1150 °C, and the corresponding critical cooling rates were 4.5 and 14.3 °C/s, respectively. At 1270 °C, the slag was difficult to crystallize and the fiber-forming rate improved. When the continuous-cooling rate was 6.5 °C/s, the slag solidified into a glassy state. The main crystallization phases, gehlenite, akermanite, anorthite, and melangite, were most easily precipitated. The growth factors of melangite and anorthite were approximately 1.63 and 1.68, respectively, which indicated that the crystals nucleated on the surface and grew in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.X. Liu, Q.B. Yu, Z.L. Zuo, W.J. Duan, Z.C. Han, Q. Qin, F. Yang, Appl. Therm. Eng. 103 (2016) 1112–1118.

    Article  Google Scholar 

  2. Y. Tan, X. Zhu, X.Y. He, B. Ding, H. Wang, Q. Liao, H. Li, Powder Technol. 323 (2018) 176–185.

    Article  Google Scholar 

  3. Q.M. Chang, X.W. Li, H.W. Ni, W.Y. Zhu, C.G. Pan, S.D. Hu, ISIJ Int. 55 (2015) 1361–1366.

    Article  Google Scholar 

  4. M. Barati, S. Esfahani, T.A. Utigard, Energy 36 (2011) 5440–5449.

    Article  Google Scholar 

  5. X. Zhu, H. Zhang, Y. Tan, H. Wang, Q. Liao, Appl. Therm. Eng. 88 (2015) 157–164.

    Article  Google Scholar 

  6. M.L. Andrade, L. Almeida, M. do Carmo Rangel, F. Pompeo, N. Nichio, Chem. Eng. Technol. 37 (2014) 343–348.

    Article  Google Scholar 

  7. Y.Q. Sun, Z.T. Zhang, L.L. Liu, X.D. Wang, Int. J. Hydrogen Energy 41 (2016) 5916–5926.

    Article  Google Scholar 

  8. A.W. Bhutto, A.A. Bazmi, G. Zahedi, Prog. Energy Comb. Sci. 39 (2013) 189–214.

    Article  Google Scholar 

  9. W.J. Duan, Q.B. Yu, J.X. Liu, L.M. Hou, H.Q. Xie, K. Wang, Q. Qin, Appl. Therm. Eng. 98 (2016) 936–943.

    Article  Google Scholar 

  10. W.J. Duan, Q.B. Yu, J.X. Liu, L.M. Hou, H.Q. Xie, K. Wang, Q. Qin, Appl. Therm. Eng. 98 (2016) 936–943.

    Article  Google Scholar 

  11. Y. Kashiwaya, C.E. Cicutti, A.W. Cramb, K. Ishii, ISIJ Int. 38 (1998) 348–356.

    Article  Google Scholar 

  12. L. Gan, C.X. Zhang, J.C. Zhou, F.Q. Shang, J. Non-Cryst. Solids 358 (2012) 20–24.

    Google Scholar 

  13. H. Liu, G. Wen, P. Tang, ISIJ Int. 49 (2009) 843–850.

    Article  Google Scholar 

  14. Y. Kashiwaya, T. Nakauchi, K.S. Pham, S. Akiyama, K. Ishii, ISIJ Int. 47 (2007) 44–52.

    Article  Google Scholar 

  15. W. Xuan, K.J. Whitty, Q. Guan, D. Bi, J. Zhang, Fuel 137 (2014) 193–199.

    Article  Google Scholar 

  16. W. Xuan, Q. Wang, J. Zhang, D. Xia, Fuel 189 (2017) 39–45.

    Article  Google Scholar 

  17. S. Esfahani, M. Barati, J. Non-Cryst. Solids 436 (2016) 35–43.

    Google Scholar 

  18. S. Esfahani, S. Mostaghel, M. Barati, J. Non-Cryst. Solids 436 (2016) 29–34.

    Google Scholar 

  19. Y.L. Qin, X.W. Lv, J. Zhang, J.L. Hao, C.G. Bai, Ironmak. Steelmak. 42 (2015) 395–400.

    Article  Google Scholar 

  20. S.S. Jung, I. Sohn, J. Am. Ceram. Soc. 96 (2013) 1309–1316.

    Article  Google Scholar 

  21. Z.J. Wang, I. Sohn, Ceram. Int. 44 (2018) 19268–19277.

    Article  Google Scholar 

  22. B. Ding, H. Wang, X. Zhu, X.Y. He, Y. Tan, Q. Liao, Fuel 223 (2018) 360–365.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51474090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-lei Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Tl., Cai, S., Zhang, Yz. et al. Crystallization behavior of blast-furnace slag by single hot thermocouple technique. J. Iron Steel Res. Int. 27, 259–265 (2020). https://doi.org/10.1007/s42243-019-00358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00358-z

Keywords

Navigation