Skip to main content

Advertisement

Log in

Effect of intercritical deformation on tensile performance of a low-carbon Si–Mn steel processed by quenching and bainitic partitioning

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of intercritical deformation on retained austenite and tensile performance of a low-carbon Si–Mn steel in modified quenching and bainitic partitioning processes was evaluated. The results showed that the intercritical deformation can play a positive role in stabilizing and refining the retained austenite, and possessed promising potential in balancing tensile strength and ductility of multiphase high-strength steels. The experimental low-carbon Si–Mn steel exhibited multiphase configuration comprising polygonal ferrite, granular bainite and granular structure after two different modified quenching and bainitic partitioning processes, and the bainitic ferrite laths got refined by intercritical deformation. The volume fraction of retained austenite in film-like and blocky morphology was increased from 11.5% to 13.9% due to applied intercritical deformation, and the larger amount of retained austenite provided the sufficient transformation-induced plasticity effect and resulted in enhanced work hardening degree; in response, enhanced ultimate tensile strength 1260 MPa and fracture elongation 22.1% were obtained, leading to increased product of strength and elongation in value of 27.7 GPa% compared to 20.8 GPa% of undeformed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Zhao, Z.Y. Jiang, Prog. Mater. Sci. 94 (2018) 174–242.

    Article  Google Scholar 

  2. H.K.D.H. Bhadeshia, Sci. Technol. Adv. Mater. 14 (2013) 014202.

    Article  Google Scholar 

  3. P. Jacques, F. Delannay, X. Cornet, Ph. Harlet, J. Ladriere, Metall. Mater. Trans. A 29 (1998) 2383–2393.

    Article  Google Scholar 

  4. M.C. Mcgrath, D.C. Van Aken, N.I. Medvedeva, J.E. Medvedeva, Metall. Mater. Trans. A 44 (2013) 4634–4643.

    Article  Google Scholar 

  5. J.G. Speer, D.K. Matlock, B.C.D. Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.

    Article  Google Scholar 

  6. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Acta Mater. 56 (2008) 16–22.

    Article  Google Scholar 

  7. J.F. Wang, K.J. Yao, A.L. Korich, S.G. Li, S.G. Ma, H.J. Ploehn, P.M. Iovien, C.P. Wang, F.X. Chu, C.B. Tang, J. Polym. Sci. A 49 (2011) 3728–3738.

    Article  Google Scholar 

  8. E.J. Seo, L. Cho, Y. Estrin, B.C.D. Cooman, Acta Mater. 113 (2016) 124–139.

    Article  Google Scholar 

  9. C. Garciamateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43 (2003) 1821–1825.

    Article  Google Scholar 

  10. F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8 (2004) 251–257.

    Article  Google Scholar 

  11. Y. Toji, H. Matsuda, M. Herbig, P.P. Cjoi, D. Raabe, Acta Mater. 65 (2014) 215–228.

    Article  Google Scholar 

  12. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8 (2004) 219–237.

    Article  Google Scholar 

  13. H.P. Liu, X.J. Jin, H. Dong, J. Shi, Mater. Charact. 62 (2011) 223–227.

    Article  Google Scholar 

  14. C.Y. Wang, Y. Chang, J. Yang, K. Zhao, H. Dong, Acta. Metall. Sin. 51 (2015) 913–919.

    Google Scholar 

  15. M. Xu, Y.G. Yang, J.Y. Chen, D. Tang, H.T. Jiang, Z.L. Mi, J. Iron Steel Res. Int. 24 (2017) 1125–1130.

    Article  Google Scholar 

  16. Y.Q. Tian, M.S. Zhang, R. Li, Y.L. Wei, J.Y. Song, X.P. Zheng, L.S. Chen, Trans. Mater. Heat Treat. 37 (2016) 161–167.

    Google Scholar 

  17. K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, ISIJ Int. 32 (1992) 1311–1318.

    Article  Google Scholar 

  18. K. Sugimoto, T. Iida, J. Sakaguchi, T. Kashima, ISIJ Int. 40 (2000) 902–908.

    Article  Google Scholar 

  19. V. Biss, R.L. Cryderman, Metall. Mater. Trans. B 2 (1971) 2267–2276.

    Article  Google Scholar 

  20. O.A. Zambrano, J. Mater. Sci. 53 (2018) 14003–14062.

    Article  Google Scholar 

  21. H.P. Liu, H. Sun, B. Liu, D.Z. Li, F. Sun, X.J. Jin, Mater. Des. 83 (2015) 760–767.

    Article  Google Scholar 

  22. S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metall. Mater. Trans. A 47 (2016) 49–58.

    Article  Google Scholar 

  23. Z.P. Hu, Y.B. Xu, X.D. Tan, J. Northeast. Univ. Nat. Sci. 37 (2016) 179–183.

    Google Scholar 

  24. L.S. Chen, Y. Li, M.S. Zhang, Y.Q. Tian, X.P. Zheng, Y. Xu, S.H. Zhang, Acta. Metall. Sin. 53 (2017) 1418–1426.

    Google Scholar 

  25. S.S. Zhu, Z.Z. Wang, X.Y. Mao, B.S. Zhang, Q.S. Dong, Z.Y. Bao, Mater. Rep. 30 (2016) 122–126.

    Google Scholar 

  26. S. Sun, M. Pugh, Mater. Sci. Eng. A 276 (2000) 167–174.

    Article  Google Scholar 

  27. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59 (2011) 6059–6068.

    Article  Google Scholar 

  28. R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, C.X. Huang, Mater. Sci. Eng. A 583 (2013) 84–88.

    Article  Google Scholar 

  29. H. Kitahara, N. Tsuji, Y. Minamino, Mater. Sci. Eng. A 438–440 (2006) 233–236.

    Article  Google Scholar 

  30. C.H. Song, H. Yu, L.L. Li, T. Zhou, J. Lu, X.H. Liu, Mater. Sci. Eng. A 670 (2016) 326–334.

    Article  Google Scholar 

  31. D.D. Knijf, R. Petrov, C. Föjer, L.A.I. Kestens, Mater. Sci. Eng. A 615 (2014) 107–115.

    Article  Google Scholar 

  32. Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, H. Ding, Mater. Sci. Eng. A 673 (2016) 63–72.

    Article  Google Scholar 

  33. Z.J. Xie, C.J. Shang, W.H. Zhou, B. Wu, Acta. Metall. Sin. 52 (2016) 224–232.

    Google Scholar 

  34. Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Gao, C.J. Shang, Mater. Des. 59 (2014) 193–198.

    Article  Google Scholar 

  35. J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Mater. Sci. Eng. A 528 (2011) 4516–4521.

    Article  Google Scholar 

  36. J.W. Ma, Q. Lu, L. Sun, Y. Shen, Metall. Mater. Trans. A 49 (2018) 4404–4408.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. 51574107 and U1860105), Natural Science Foundation of Hebei Province (No. E2017209048), and Science and Technology Research Project for Institutions of Higher Learning of Hebei Province (No. ZD2019064) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-sheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Yq., Cao, Zq., Li, W. et al. Effect of intercritical deformation on tensile performance of a low-carbon Si–Mn steel processed by quenching and bainitic partitioning. J. Iron Steel Res. Int. 27, 208–216 (2020). https://doi.org/10.1007/s42243-019-00357-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00357-0

Keywords

Navigation