Skip to main content
Log in

Effect of deep cryogenic treatment on martensitic lath refinement and nano-twins formation of low carbon bearing steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of heat treatment and deep cryogenic treatment on microstructural evolution of low carbon martensitic bearing steel was investigated. The experimental results showed that the lath martensite was obtained by quenching and a few twins as substructures formed in some martensitic laths. The rudiment of sub-interfaces of martensitic lath was formed in the high-density dislocation regions after deep cryogenic treatment; meanwhile, the number of twins increased, especially in the high-density dislocation regions. This phenomenon is due to the increase in internal stress caused by cryogenic treatment. After tempering, the rudiment of sub-interface further evolved into the martensitic lath boundary, and thus the original martensitic laths were refined. The twins formed by cryogenic treatment did not disappear after tempering. In addition, small quantities of annealing twins formed in tempering process. Martensitic laths morphology and substructures in different stages of the heat and deep cryogenic treatment were observed by transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Bhattacharyya, G. Subhash, N. Arakere, Int. J. Fatigue 59 (2014) 102–113.

    Article  Google Scholar 

  2. H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57 (2012) 268–435.

    Article  Google Scholar 

  3. M. Safavi, S.M. Abbasi, R. Mahdavi, J. Iron Steel Res. Int. 19 (2012) No. 2, 67–72.

    Article  Google Scholar 

  4. S. Li, K. Zhao, K. Wang, M. Yang, Mater. Charact. 124 (2017) 154–164.

    Article  Google Scholar 

  5. J.V. Giacchi, O. Fornaro, H. Palacio, Mater. Charact. 68 (2012) 49–57.

    Article  Google Scholar 

  6. S.S. Gill, J. Singh, R. Singh, H. Singh, J. Mater. Eng. Perform. 21 (2012) 1320–1326.

    Article  Google Scholar 

  7. A. Joseph Vimal, A. Bensely, D. Mohanlal Lan, K. Srinivasan, Mater. Manuf. Process. 23 (2008) 369–376.

    Article  Google Scholar 

  8. I. Gunes, A. Cicek, K. Aslantas, F. Kara, Trans. Ind. Inst. Met. 67 (2014) 909–917.

    Article  Google Scholar 

  9. V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Y.N. Petrov, Y.V. Tarusin, Acta Mater. 61 (2013) 1705–1715.

    Article  Google Scholar 

  10. K. Amini, A. Akhbarizadeh, S. Javadpour, Vacuum 86 (2012) 1534–1540.

    Article  Google Scholar 

  11. Y.M. Rhyim, S.H. Han, Y.S. Na, J.H. Lee, Solid State Phenom. 118 (2006) 9–14.

    Article  Google Scholar 

  12. S. Li, N. Min, J. Li, X. Wu, C. Li, L. Tang, Mater. Sci. Eng. A 575 (2013) 51–60.

    Article  Google Scholar 

  13. S. Li, L. Deng, X. Wu, Y. Min, H. Wang, Cryogenics 50 (2010) 754–758.

    Article  Google Scholar 

  14. E.W. Qin, L. Lu, N.R. Tao, J. Tan, K. Lu, Acta Mater. 57 (2009) 6215–6225.

    Article  Google Scholar 

  15. Y.S. Li, Y. Zhang, N.R. Tao, K. Lu, Acta Mater. 57 (2009) 761–772.

    Article  Google Scholar 

  16. C.S. Hong, N.R. Tao, X. Huang, K. Lu, Acta Mater. 58 (2010) 3103–3116.

    Article  Google Scholar 

  17. Y. Zhang, N.R. Tao, K. Lu, Scripta Mater. 60 (2009) 211–213.

    Article  Google Scholar 

  18. A. Oppenkowski, S. Weber, W. Theisen, J. Mater. Process. Technol. 210 (2010) 1949–1955.

    Article  Google Scholar 

  19. D. Das, R. Sarkar, A.K. Dutta, K.K. Ray, Mater. Sci. Eng. A 528 (2010) 589–603.

    Article  Google Scholar 

  20. J.D. Verhoeven, Fundamentals of physical metallurgy, Wiley, New York, USA, 1975.

    Google Scholar 

  21. J. Pešička, R. Kužel, A. Dronhofer, G. Eggeler, Acta Mater. 51 (2003) 4847–4862.

    Article  Google Scholar 

  22. A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, Y.N. Petrov, V.G. Gavriljuk, Mater. Sci. Eng. A 527 (2010) 7027–7039.

    Article  Google Scholar 

  23. P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, A. Czyrska-Filemonowicz, Acta Mater. 45 (1997) 4901–4907.

    Article  Google Scholar 

  24. D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, A.R. Kaysser-Pyzalla, Mater. Sci. Eng. A 528 (2011) 1372–1381.

    Article  Google Scholar 

  25. P.M. Kelly, J. Nutting, P. Roy, Proc. Roy. Soc. A 259 (1960) 45–58.

    Google Scholar 

  26. T.H. Lee, H.Y. Ha, J.H. Jang, J.Y. Kang, J. Moon, J.Y. Park, C.H. Lee, S.J. Park, Acta Mater. 123 (2017) 197–205.

    Article  Google Scholar 

  27. G. Ghosh, G.B. Olson, J. Phase Equilib. 22 (2001) 199–207.

    Article  Google Scholar 

  28. P.F. Shi, A. Engström, L. Höglund, Q. Chen, S. Bo, J. Ågren, M. Hillert, J. Iron Steel Res. Int. 14 (2007) No. 5, 210–215.

    Article  Google Scholar 

  29. B.P. Sandvik, C.M. Wayman, Metallography 16 (1983) 199–227.

    Article  Google Scholar 

  30. S. Sato, K. Wagatsuma, S. Suzuki, M. Kumagai, M. Imafuku, H. Tashiro, K. Kajiwara, T. Shobuf, Mater. Charact. 83 (2013) 152–160.

    Article  Google Scholar 

  31. J.S. Pan, J.M. Tong, M.B. Tian, Fundamentals of materials science, Tsinghua University Press, Beijing, China, 1998.

  32. H.Y. Yi, F.K. Yan, N.R. Tao, K. Lu, Mater. Sci. Eng. A 647 (2015) 152–156.

    Article  Google Scholar 

  33. S.J. Wang, T. Jozaghi, I. Karaman, R. Arroyave, Y.I. Chumlyakov, Mater. Sci. Eng. A 694 (2017) 121–131.

    Article  Google Scholar 

  34. S. Dash, N. Brown, Acta Metall. 11 (1963) 1067–1075.

    Article  Google Scholar 

  35. Y. Yuan, Y. Gu, C. Cui, T. Osada, Z. Zhong, T. Tetsui, J. Mater. Res. 26 (2011) 2833–2837.

    Article  Google Scholar 

Download references

Funding

Funding was provided by Analysis and Testing Foundation of Kunming University of Science and Technology (Grant Nos. 2017M20152230037, 2017M20152230069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-yu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, Xy., Wu, Zw., He, X. et al. Effect of deep cryogenic treatment on martensitic lath refinement and nano-twins formation of low carbon bearing steel. J. Iron Steel Res. Int. 27, 105–113 (2020). https://doi.org/10.1007/s42243-019-00356-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00356-1

Keywords

Navigation