Skip to main content
Log in

High-performance chromite by structure stabilization treatment

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Chromite is an important raw material applied in refractories. Efforts have been made to obtain high-performance chromite by adding MgO and Al2O3 from the viewpoint of structure optimization. In order to explore the effect of Al2O3 and MgO on the structure, two formulas, i.e., Mg-rich and Al-rich ones, were selected. The phase and microstructure development of samples heated in the temperature range of 1200–1600 °C were studied by X-ray diffraction and scanning electron microscopy with energy-dispersive spectrometry. MgO and Al2O3 added have diffused into chromite successfully by heat treatment. MgO diffuses into chromite, occupying the tetrahedral vacancies caused by the diffusion and oxidation of Fe2+ ions to stabilize the structure. Al2O3 diffuses into the surface layer of chromite, forming spinel-sesquioxide structure. Al-rich sample which has spinel-sesquioxide structure shows better corrosion resistance toward fayalite slag than Mg-rich sample which has single spinel structure by blocking the interdiffusion between Fe2+ ions in fayalite slag and Mg2+ ions in chromite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Azhari, F. Golestani-Fard, H. Sarpoolaky, J. Eur. Ceram. Soc. 29 (2009) 2679–2684.

    Article  Google Scholar 

  2. K. Goto, Shigen-Chishitsu 47 (1997) 223–229.

    Google Scholar 

  3. H. Zargar, Sintering studies of magnesia-chromite refractory composites, University of British Columbia, Canada, 2014.

    Google Scholar 

  4. M.L. Van Dreser, W.H. Boyer, J. Am. Ceram. Soc. 46 (1963) 257–264.

    Article  Google Scholar 

  5. D.H. Speidel, J. Am. Ceram. Soc. 50 (1967) 243–248.

    Article  Google Scholar 

  6. K.X. Chen, Y. Li, Z.H. Huang, J. Northwest Inst. Light Ind. (1992) No. 3, 151–155.

  7. A. Malfliet, S. Lotfian, L. Scheunis, V. Petkov, L. Pandelaers, P. T. Jones, B. Blanpain, J. Eur. Ceram. Soc. 34 (2014) 849–876.

    Article  Google Scholar 

  8. X.W. Zhu, W.D. Qiu, Y.H. Liang, W. Zhao, P. Yue, J.H. Nie, R.Q. Cui, Refractories 47 (2013) 430–432.

    Google Scholar 

  9. S. Asano, Taikabutsu 42 (1990) 341–342.

    Google Scholar 

  10. V.D. Tathavakar, M.P. Antony, A. Jha, Metall. Mater. Trans. B 36 (2005) 75–84.

    Article  Google Scholar 

  11. P.E. Scheerer, H.M. Mikami, J.A. Tauber, J. Am. Ceram. Soc. 47 (1964) 297–305.

    Article  Google Scholar 

  12. H.G. Emblem, T.J. Davies, A. Harabi, A.A. Ogwu, C.S. Nwobodo, V. Tsantzalou, J. Mater. Sci. Lett. 11 (1992) 820–821.

    Article  Google Scholar 

  13. G.M. Dodis, T.V. Dodis, P.N. Babin, Refractories 23 (1982) 25–30.

    Article  Google Scholar 

  14. W.S. Treffner, J. Am. Ceram. Soc. 44 (1961) 583–591.

    Article  Google Scholar 

  15. S.M. Zubakov, Refractories and Industrial Ceramics 1 (1960) 220–225.

    Article  Google Scholar 

  16. D. Zhu, C. Yang, J. Pan, X.B. Li, Metall. Mater. Trans. B 47 (2016) 2919–2930.

    Article  Google Scholar 

  17. J. Pan, C.C. Yang, D.Q. Zhu, ISIJ Int. 55 (2015) 727–735.

    Article  Google Scholar 

  18. R.E. Carter, J. Am. Ceram. Soc. 44 (1961) 116–120.

    Article  Google Scholar 

  19. M.K. Haldar, H.S. Tripathi, S.K. Das, A. Ghosh, Ceram. Int. 30 (2004) 911–915.

    Article  Google Scholar 

  20. J.R. Donald, J.M. Toguri, C. Doyle, Metall. Mater. Trans. B 29 (1998) 317–323.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their appreciations to the National Natural Science Foundation for Excellent Young Scholars of China (No. 51522402), the National Natural Science Foundation of China (Nos. 51904021 and 51974021) and Fundamental Research Funds for the Central Universities (No. FRF-TP-19-008A1) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-mei Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Eh., Luo, C., Chen, Jh. et al. High-performance chromite by structure stabilization treatment. J. Iron Steel Res. Int. 27, 169–179 (2020). https://doi.org/10.1007/s42243-019-00354-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00354-3

Keywords

Navigation