Skip to main content
Log in

Effect of coiling and annealing temperatures on yield point behavior of low-carbon steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Low-carbon steel is widely used for household appliance and automotive panel steel because of its excellent plasticity. Unfortunately, yield point phenomena easily appear in the low-carbon steel produced by a continuous annealing process and cause degradation to the surface quality during processing. The effect of the coiling temperature (600–750 °C) and annealing temperature (740–820 °C) on the yield point behavior is studied. Tensile tests show that coiling temperature has a greater effect on yield point elongation (YPE) and aging index (AI) than the annealing temperature. Microstructure observations show that coiling temperature at 750 °C would make the micron-sized carbides appearing at the grain boundary disappear and a number of dispersed nanoscale carbides precipitate in grain interior, corresponding to the highest solid solution carbon content in the matrix of 750 °C coiled sample. The experimental results suggest that AI rather than YPE has a positive relationship with the solid solution carbon content of the low-carbon steel. And YPE has a positive relationship with the upper/lower yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.J. Baker, S.R. Daniel, J.D. Paker, Mater. Sci. Technol. 18 (2002) 355–368.

    Article  Google Scholar 

  2. R.K. Ray, J.J. Jonas, R.E. Hook, Int. Mater. Res. 39 (1994) 129–172.

    Google Scholar 

  3. B. Soenen, A.K. De, S. Vandeputte, B.C. De Cooman, Acta Mater. 12 (2004) 3483–3492.

    Article  Google Scholar 

  4. Z. Shen, L. Liu, Y. Yang, Y. Zhang, J. Fu, C. Song, Q. Zhai, Annu. Meeting Exhibit. (2015) 479–483

  5. P.R. Mould, JOM 34 (1982) 18–28.

    Article  Google Scholar 

  6. X. Liang, J. Li, Y. Peng, J. Iron Steel Res. Int. 15 (2008) No. 5, 77–94.

    Article  Google Scholar 

  7. M.D. Richards, E.S. Drexler, J.R. Fekete, Mater. Sci. Eng. A 529 (2011) 184–191.

    Article  Google Scholar 

  8. O. Rodriguez-Alabanda, R. Molleja-Molleja, G. Guerrero-Vaca, P.E. Romero, Int. J. Adv. Manuf. Technol. 101 (2019) 3065–3071.

  9. D.H. Kim, B.M. Kim, Y. Lee, Mater. Sci. Technol. 139 (2003) 414–421.

    Google Scholar 

  10. V. Massardier, J. Merlin, Metall. Mater. Trans. A 40 (2009) 1100–1109.

    Article  Google Scholar 

  11. M. Wang, X. Li, Z. Zheng, G. Zhang, J. Iron Steel Res. Int. 20 (2011) No. S1, 388–392.

    Google Scholar 

  12. X. Wang, R. Liu, K. Wang, J. Guo, L. Lin, J. Iron Steel Res. Int. 18 (2011) No. S1, 742–746.

    Google Scholar 

  13. J. Merin, P. Merle, S. Garnier, M. Bouzekri, M. Soler, Metall. Mater. Trans. A 35 (2004) 1655–1661.

    Article  Google Scholar 

  14. R. Riccardo, C. Mapelli, R. Venturini, ISIJ Int. 47 (2007) 1204–1213.

    Article  Google Scholar 

  15. K. Lips, X. Yang, K. Mols, Steel. Res. 9 (1996) 357–363.

    Article  Google Scholar 

  16. J.D. Baird, Metall. Rev. 16 (1971) 1–18.

    Google Scholar 

  17. A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. 62 (1949) 49–62.

    Article  Google Scholar 

  18. L.J. Baker, J.D. Parker, S.R. Danielc, J. Mater. Process. Technol. 143-144 (2003) 442–447.

    Article  Google Scholar 

  19. W. Li, M. Cai, D. Wang, J. Zhang, S. Zhao, P. Shao, Mater. Sci. Eng. A 679 (2017) 410–416.

    Article  Google Scholar 

  20. M.P. Staiger, A. Brownrigg, P.D. Hodgson, C.H.J. Davies, Mater. Sci. Eng. A 264 (2004) 35–47.

    Article  Google Scholar 

  21. J.Y. Huang, J.R. Hwang, J.J. Yeh, C.Y. Chen, R.C. Kuo, J.G. Huang, J. Nucl. Mater. 324 (2004) 140–151.

    Article  Google Scholar 

  22. T.O. de Souza, V.T.L. Buono, Mater. Sci. Eng. A 354 (2003) 212–216.

    Article  Google Scholar 

  23. M. Turkmen, S. Gündüz, Ironmak. Steelmak. 38 (2011) 346–352.

    Article  Google Scholar 

  24. Y. Ono, Y. Funakawa, K. Okuda, K. Seto, N. Ebisawa, K. Inoue, Y. Nagai, ISIJ Int. 57 (2017) 1273–1281.

    Article  Google Scholar 

  25. S.K. Ray, S. Mishra, O.N. Mohanty, Scripta Metall. 16 (1982) 43–47.

    Article  Google Scholar 

  26. S. Takaki, D. Akama, N. Nakada, T. Tsuchiyama, Mater. Trans. 55 (2014) 28–34.

    Article  Google Scholar 

  27. D.P. Pareige, B. Radiguet, A. Suvorov, Surf. Interf. Anal. 36 (2004) 581–584.

    Article  Google Scholar 

  28. N. Tsuchida, Y. Tomota, K. Nagai, K. Fukaura, Scripta Mater. 54 (2006) 57–60.

    Article  Google Scholar 

  29. Y. Tomota, A. Narui, N. Tsuchida, ISIJ Int. 48 (2008) 1107–1113.

    Article  Google Scholar 

  30. Z. Shen, B. Wang, G. Liang, Y. Zhang, K. Han, C. Song, ISIJ Int. 58 (2018) 373–375.

    Article  Google Scholar 

  31. D.S. Clark, T.L. Russell, D.S. Wood, Acta Metall. 9 (1961) 1054–1063.

    Article  Google Scholar 

  32. J.P. Bailon, J.M. Dorlot, Acta Mater. 19 (1971) 71–83.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Joint Fund of Iron and Steel Research (No. U1660103), National Natural Science Foundation of China (No. 51574162) and the National Key R&D Program of China (No. 2018YFE0306102). 3DAP measurements were made in the Instrumental Analysis and Research Center at Shanghai University. The authors would like to express sincere thanks for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-jiang Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Zm., Li, X., Yang, L. et al. Effect of coiling and annealing temperatures on yield point behavior of low-carbon steel. J. Iron Steel Res. Int. 27, 325–333 (2020). https://doi.org/10.1007/s42243-019-00342-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00342-7

Keywords

Navigation