Skip to main content

Advertisement

Log in

Influence of annealing on microstructure and hydrogen storage properties of V48Fe12Ti15Cr25 alloy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

V48Fe12Ti15Cr25 alloy was prepared using vacuum arc melting and was subsequently annealed for 10 h at 1273 K. The effects of annealing on the hydrogen storage properties and microstructure of the V48Fe12Ti15Cr25 alloys were investigated. The results indicated that the alloy consisted of main body-centered cubic, Ti-rich, and TiFe phases. After annealing, the kinetic properties of the alloy were improved but its hydrogen storage capacity was slightly reduced. The kinetic mechanisms of the hydrogen absorption and desorption of the alloys were studied. The dehydrogenation enthalpy of the alloy was decreased by 2.57 kJ/mol after annealing. Differential scanning calorimetry indicated that the hydride decomposition temperature of the annealed alloy was decreased. The hydrogen desorption activation energies of the as-cast and annealed alloys were calculated to be 79.41 and 71.25 kJ/mol, respectively. The results illustrated that annealing was a beneficial method of improving the kinetic and thermodynamic properties of the hydrogen absorption/desorption of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205.

    Google Scholar 

  2. Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.

    Google Scholar 

  3. H.C. Lin, K.M. Lin, K.C. Wu, H.H. Hsiung, H.K. Tsai, Int. J. Hydrogen Energy 32 (2007) 4966–4972.

    Google Scholar 

  4. D.C. Feng, H. Sun, Z.H. Hou, D.L. Zhao, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 50–58.

    Google Scholar 

  5. D.C. Feng, H. Sun, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 25 (2018) 746–754.

    Google Scholar 

  6. M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.

    Google Scholar 

  7. Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770.

    Google Scholar 

  8. M.V. Lototsky, V.A. Yartys, I.Y. Zavaliy, J. Alloy. Compd. 404 (2005) 421–426.

    Google Scholar 

  9. X.P. Song, P. Pei, P.L. Zhang, G.L. Chen, J. Alloy. Compd. 455 (2008) 392–397.

    Google Scholar 

  10. X.B. Yu, Z Wu, B.J. Xia, T.Z. Huang, J.Z. Chen, Z.S. Wang, N.X. Xu, J. Mater. Res. 18 (2003) 2533–2536.

    Google Scholar 

  11. X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, Int. J. Hydrogen Energy 29 (2004) 1377–1381.

    Google Scholar 

  12. X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, Int. J. Hydrogen Energy 31 (2006) 1176–1181.

    Google Scholar 

  13. X.B. Yu, S.L. Feng, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 393 (2005) 129–134.

    Google Scholar 

  14. X.B. Yu, Z.W. Tang, D.L. Sun, L.Z Ouyang, M. Zhu, Prog. Mater. Sci. 88 (2017) 1–48.

    Google Scholar 

  15. T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura, M. Okada, J. Alloy. Compd. 330 (2002) 522–525.

    Google Scholar 

  16. S.W. Cho, C.S. Han, C.N. Park, E. Akiba, J. Alloy. Compd. 289 (1999) 244–250.

    Google Scholar 

  17. K. Asano, S. Hayashi, Y. Nakamura, E. Akiba, J. Alloy. Compd. 524 (2012) 63–68.

    Google Scholar 

  18. K. Asano, S. Hayashi, Y. Nakamura, Acta Mater. 83 (2015) 479–487.

    Google Scholar 

  19. K. Asano, S. Hayashi, Y. Nakamura, Int. J. Hydrogen Energy 41 (2016) 6369–6375.

    Google Scholar 

  20. H. Kim, K. Sakaki, I. Saita, H. Enoki, K. Noguchi, A. Machida, T. Watanuki, Y. Nakamura, Int. J. Hydrogen Energy 39 (2014) 10546–10551.

    Google Scholar 

  21. G. Mazzolai, Int. J. Hydrogen Energy 33 (2008) 7116–7121.

    Google Scholar 

  22. S.W. Cho, C.N. Park, J.H. Yoo, J. Choi, J.S. Park, C.Y. Suh, G. Shim, J. Alloy Compd. 403 (2005) 262–266.

    Google Scholar 

  23. T. Kabutomori, H. Takeda, Y. Wakisaka, K. Ohnishi, J. Alloy. Compd. 231 (1995) 528–532.

    Google Scholar 

  24. U. Ulmer, K. Asano, A. Patyk, H. Enoki, Y. Nakamur, A. Pohl, R. Dittmeyer, M. Fichtner, J. Alloy. Compd. 648 (2015) 1024–1030.

    Google Scholar 

  25. X.B. Yu, Z. Wu, F. Li, B.J. Xia, N.X. Xu, Appl. Phys. Lett. 84 (2004) 3199–3201.

    Google Scholar 

  26. X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, J. Alloy. Compd. 372 (2004) 272–277.

    Google Scholar 

  27. Y.G. Yan, Y.H. Chen, C.L. Wu, M.D. Tao, H. Liang, J. Power Sources 164 (2007) 799–802.

    Google Scholar 

  28. J. Mi, F. LÜ, X.P. Liu, L.J. Jiang, Z.N. Li, S.M. Wang, J. Rare Earth 28 (2010) 781–784.

    Google Scholar 

  29. J. Matsuda, E. Akiba, J. Alloy. Compd. 581 (2013) 369–372.

    Google Scholar 

  30. Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, Q.D. Wang, Int. J. Hydrogen Energy 38 (2013) 12803–12810.

    Google Scholar 

  31. Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.

    Google Scholar 

  32. S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, V.A. Yartys, Int. J. Hydrogen Energy 37 (2012) 7624–7628.

    Google Scholar 

  33. A. Kamegawa, T. Tamura, H. Takamura, M. Okada, J. Alloy. Compd. 356–357 (2003) 447–451.

    Google Scholar 

  34. X.P. Liu, L.J. Jiang, Z.N. Li, Z. Huang, S.M. Wang, J. Alloy. Compd. 471 (2009) L36–L38.

    Google Scholar 

  35. M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A. Kamegawa, J. Alloy. Compd. 330 (2002) 511–516.

    Google Scholar 

  36. S. Cho, G. Shim, G. Cho, C. Park, J. Yoo, J. Choi, J. Alloy. Compd. 430 (2007) 136–141.

    Google Scholar 

  37. M. Tsukahara, Mater. Trans. 52 (2011) 68–72.

    Google Scholar 

  38. Z.M. Hang, X.Z. Xiao, S.Q. Li, H.W. Ge, C.P. Chen, L.X. Chen, J. Alloy. Compd. 529 (2012) 128–133.

    Google Scholar 

  39. Y.F. Zhu, H.G. Pan, M.X. Gao, Y.F. Liu, Q.D. Wang, J. Alloy. Compd. 348 (2003) 301–308.

    Google Scholar 

  40. M.H. Rong, F. Wang, J. Wang, Z.M. Wang, H.Y. Zhou, Prog. Nat. Sci. 27 (2017) 543–549.

    Google Scholar 

  41. E. Akiba, H. Iba, Intermetallics 6 (1998) 461–470.

    Google Scholar 

  42. Y.G. Yan, Y.G. Chen, X.X. Zhou, H. Liang, C.L. Wu, M.D. Tao, J. Alloy. Compd. 453 (2008) 428–432.

    Google Scholar 

  43. Y.G. Yan, Y.G. Chen, H. Liang, X.X. Zhou, C.L. Wu, M.D. Tao, L.J. Pang, J. Alloy. Compd. 454 (2008) 427–431.

    Google Scholar 

  44. J.Y. Wang, R.R. Jeng, J.K. Nieh, S.Y. Lee, S.L. Lee, H.Y. Bor, Int. J. Hydrogen Energy 32 (2007) 3959–3964.

    Google Scholar 

  45. Y. Nakamura, K. Oikawa, T. Kamiyama, E. Akiba, J. Alloy. Comp. 316 (2001) 284–289.

    Google Scholar 

  46. N. Endo, I. Saita, Y. Nakamura, H. Saitoh, A. Machida, Int. J. Hydrogen Energy 40 (2015) 3283–3287.

    Google Scholar 

  47. H.Y. Leng, Z.G. Yu, J. Yin, Q. Li, Z. Wu, K.C. Chou, Int. J. Hydrogen Energy 42 (2017) 23731–23736.

    Google Scholar 

  48. P. Lv, J. Huot, Energy 138 (2017) 375–382.

    Google Scholar 

  49. Y.P. Pang, Q. Li, Int. J. Hydrogen Energy 41 (2016) 18072–18087.

    Google Scholar 

  50. B.K. Singh, S.W. Cho, K.S. Bartwal, Int. J. Hydrogen Energy 39 (2014) 8351–8356.

    Google Scholar 

  51. P. Pei, X.P. Song, J. Liu, G.L. Chen, X.B. Qin, B.Y. Wang, Int. J. Hydrogen Energy 34 (2009) 8094–8100.

    Google Scholar 

  52. H.Y. Zhou, F. Wang, J. Wang, Z.M. Wang, Q.R. Yao, J.Q. Deng, C.Y. Tang, G.H. Rao, Int. J. Hydrogen Energy 39 (2014) 14887–14895.

    Google Scholar 

  53. E.D. Wu, W.H. Li, J. Li, Int. J. Hydrogen Energy 37 (2012) 1509–1517.

    Google Scholar 

  54. T.D. Wu, X.Y. Xue, T.B. Zhang, R. Hu, H.C. Kou, J.S. Li, J. Alloy. Compd. 645 (2015) 358–368.

    Google Scholar 

  55. H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.

    Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 51901105) and Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2018LH05010, 2019BS05005, and 2017BS0507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-yuan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Bian, X., Wu, Wy. et al. Influence of annealing on microstructure and hydrogen storage properties of V48Fe12Ti15Cr25 alloy. J. Iron Steel Res. Int. 27, 217–227 (2020). https://doi.org/10.1007/s42243-019-00337-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00337-4

Keywords

Navigation