Effect of grain recrystallization on stir zone and mechanical property behavior of TRIP 780 steel

  • Gladys Pérez-MedinaEmail author
  • Hugo Lopez
  • Argelia Miranda-Pérez
  • Eduardo Hurtado-Delgado
Original Paper


Electron backscatter diffraction (EBSD) and transmission electron microscopy were used to determine the presence of retained austenite and displacive-type phase transformation in the stir zone of friction stir welding (FSW). Severe plastic deformations occurred in the stir zone where there was an increase in the temperature attributed to the FSW process and subsequently a grain recrystallization. Besides the recrystallization phenomena, the formation of grain evolution development in steels was resolved using EBSD. In addition, a tensile test was carried out in order to reveal the results of mechanical strength. It was found that the fracture zone occurred in the stir zone with an ultimate tensile strength of 587 MPa, a decrease of 267 MPa compared with that of the base metal. From this result, it is evident that the fracture exhibits numerous elongated dimples, distributed homogeneously, and certain locations contain cleavage fractures due to differences in the microstructure of the base metal. Microhardness profile tests of the welding regions were conducted, and the results showed that the stir zone was present with elevated hardness (near 350 HV). Characterization techniques revealed that the austenite-to-martensite transformation occurred in the stir zone, resulting in a loss of mechanical properties in the joint.


Friction welding Transformation-induced plasticity steel Stir zone Mechanical property Tensile test 


  1. [1]
    N. Kapustka, C. Conrardy, S. Babu, Welding J. 87 (2008) 135–148.Google Scholar
  2. [2]
    L. Laquerbe, J. Neutjens, Ph. Harlet, St. Mech, in: F. Caroff, P. Cantinieaux (Eds.), 41st Mechanical Working and Steel Processing Conference of Toronto, Ontario, Canada, 1999, pp. 89–99.Google Scholar
  3. [3]
    M.Y. Zhang, F.X. Zhu, D.S. Zheng, J. Iron Steel Res. Int. 18 (2011) No. 8, 73–78.CrossRefGoogle Scholar
  4. [4]
    T.K. Shan, S.H. Li, W.G. Zhang, X.G. Xu, Mater. Des. 29 (2008) 1810–1816.CrossRefGoogle Scholar
  5. [5]
    V. Miguel, A. Martínez, J. Coello, J. Mater. Process. Technol. 213 (2013) 1703–1710.CrossRefGoogle Scholar
  6. [6]
    M. Ghosh, K. Kumar, R.S. Mishra, Mater. Sci. Eng. A 528 (2011) 8111–8119.CrossRefGoogle Scholar
  7. [7]
    F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, T.W. Nelson, J. Mater. Sci. Technol. 34 (2018) 39–57.CrossRefGoogle Scholar
  8. [8]
    R.S. Mishra, M.W. Mahoney, S.X. McFadden, Scripta Mater. 42 (1999) 163–168.CrossRefGoogle Scholar
  9. [9]
    D. Lohwasser, Z. Chen, Friction stir welding: from basics to applications, Woodhead Publishing in Materials, Oxford, UK, 2010.CrossRefGoogle Scholar
  10. [10]
    G. Venkateswarlu, A.K. Singh, J. Davidson, G.R. Tagore, J. Mater. Res. Technol. 2 (2013) 135–140.CrossRefGoogle Scholar
  11. [11]
    M.M. Song, B. Song, S.H. Zhang, Z.B. Yang, Z.L. Xue, S.Q. Song, R.S. Xu, Z.B. Tong, J. Iron Steel Res. Int. 25 (2018) 1033–1042.CrossRefGoogle Scholar
  12. [12]
    H.H. Cho, S.H. Kang. S.H. Kim, K.H. Oh, H.J. Kim, W.S. Chang, H.N. Han, Mater. Des. 34 (2012) 258–267.Google Scholar
  13. [13]
    V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, Trans. ASM Quart. 60 (1967) 252–259.Google Scholar
  14. [14]
    B.R. Banerjee, J.M. Capenos, Application of fracture toughness parameters to structural metals, Gordon and Breach Science Publishers, New York, USA, 1966.Google Scholar
  15. [15]
    A. Z. Hanzaki, P.D. Hodgson, S. Yue, Metall. Mater. Trans. A 28 (1997) 2405–2414.CrossRefGoogle Scholar
  16. [16]
    L. Cui, H. Fujii, N. Tsuji, K. Nakata, K. Nogi, R. Ikeda, M. Matsushita, ISIJ Int. 47 (2007) 299–306.CrossRefGoogle Scholar
  17. [17]
    Y.S. Sato, H. Yamanoi, H. Kokawa, T. Furuhara, Scripta Mater. 57 (2007) 557–560.CrossRefGoogle Scholar
  18. [18]
    Y.D. Chung, H. Fujii, R. Ueji, N. Tsuji, Scripta Mater. 63 (2010) 223–226.CrossRefGoogle Scholar
  19. [19]
    A.K. De, J.G. Speer, D.K. Matlock, Adv. Mater. Processes 161 (2003) 27–30.Google Scholar
  20. [20]
    G.Y. Pérez-Medina, H.F. López, Arch. Metall. Mater. 59 (2014) 1437–1442.CrossRefGoogle Scholar
  21. [21]
    K. Ding, H.J. Ji, Q.L. Zhang, X. Liu, P. Wang, X.H. Li, L. Zhang, Y.L. Gao, J. Iron Steel Res. Int. 25 (2018) 839–846.CrossRefGoogle Scholar
  22. [22]
    T.C. Lomholt, Microstructure evolution during friction stir spot welding of TRIP steel, Technology University of Denmark, Denmark, 2013.Google Scholar
  23. [23]
    S. Mironov, Y. Sato, H. Kokawa, Application of EBSD to microstructural control in friction stir welding/processing, Springer Science, 2009, pp. 291–300.Google Scholar
  24. [24]
    S. Mironov, Y.S. Sato, S. Yoneyama, H. Kokawa, H.T. Fujii, S. Hirano, Mater. Sci. Eng. A 717 (2018) 26–33.CrossRefGoogle Scholar
  25. [25]
    M. De Meyer, D. Vanderschueren, B. Comaan, in: MWSP (Eds.), The Influence of Al on the Properties of Cold Rolled C-Mn-Si TRIP Steel, Iron and Steel Society AIME, Chicago, USA, 1999, pp. 265–276.Google Scholar
  26. [26]
    J. Chen, K. Sand, M.S. Xia, C. Ophus, R. Mohammadi, M.L. Kuntz, Metall. Mater. Trans. A 39 (2008) 593–603.CrossRefGoogle Scholar
  27. [27]
    H.G. Tehrani-Moghaddam, H.R. Jafarian, M.T Salehi, A.R. Eivani, Mater. Sci. Eng. A 718 (2018) 335–344.CrossRefGoogle Scholar
  28. [28]
    H. Bhadheshia, Bainite in steels, 2nd ed., IOM Communications Ltd., London, UK, 2001.Google Scholar
  29. [29]
    A. Grajcar, M. Rozanski, S. Stano, A. Kowalski, J. Mater. Eng. Perform. 23 (2014) 3400–3406.CrossRefGoogle Scholar
  30. [30]
    S. Mironov, Y.S. Sato, H. Kokawa, Acta Mater. 56 (2008) 2602–2614.CrossRefGoogle Scholar
  31. [31]
    R. Petrov, L. Kestens, A. Wasilkowska, Y. Houbaert, Mater. Sci. Eng. A 447 (2007) 285–297.CrossRefGoogle Scholar
  32. [32]
    G. Krauss, Steels-processing, structure, and performance, ASM International, Ohio, USA, 2015.Google Scholar
  33. [33]
    T. Maki, in: E. Pereloma, D. Edmonds (Eds.), Phase Transformations in Steels, Woodhead Publishing, UK, 2012, pp. 34–58CrossRefGoogle Scholar
  34. [34]
    F.C. Campbell, Fatigue and fracture-understanding basics, ASM International, Ohio, USA, 2012.Google Scholar
  35. [35]
    J. Xiong, X. Yang, W. Lin, K. Liu, J. Manuf. Processes 32 (2018) 280–287.CrossRefGoogle Scholar
  36. [36]
    A. Laureys, T. Depover, R. Petrov, K. Verbeken, Mater. Charact. 112 (2016) 169–179.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.Postgraduate StudiesMexican Corporation in Materials ResearchSaltillo CoahuilaMexico
  2. 2.Materials DepartmentUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations