Skip to main content
Log in

Numerical simulation of impact and solidification of melting dust on spherical bead surface and experimental validation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The impact and solidification processes of single melting tin dust at the micron scale on a spherical bead were numerically studied with hot flue gas flow. The geometrical evolution of dust impacting on hot bead and spreading without solidification involved initial spreading, retraction and oscillation, and stabilizing. The increased impact angle was found to reduce maximum spread area, weaken retraction and oscillation, and raise steady spread area. Dust impacting on cold bead completely solidified after liquid spreading and solidification without retraction and oscillation. Increased impact angle raised solidification sliding distance, whereas it reduced solidification spread area. Then, the effects of bead temperature, dust inlet velocity and size on the sliding and spreading of dust were studied, and the results indicated that increasing bead temperature, dust inlet velocity and size could raise solidification sliding distance and solidification spread area. With the dusts continually impacting on the bed, a dust layer forms at the front of bead, being different from that of solid dust, which becomes thick firstly, and then spreads from bead front to sides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Pasandideh-Fard, R. Bhola, S. Chandra, J. Mostaghimi, Int. J. Heat Mass Transfer 41 (1998) 2929–2945.

    Article  Google Scholar 

  2. S. Vincent, C. Le Bot, F. Sarret, E. Meillot, J. Caltagirone, L. Bianchi, Comput. Fluids 113 (2015) 32–41.

    Article  MathSciNet  Google Scholar 

  3. M. Pasandideh-Fard, V. Pershin, S. Chandra, J. Mostaghimi, J. Therm. Spray Technol. 11 (2002) 206–217.

    Article  Google Scholar 

  4. S. Haferl, D. Poulikakos, J. Appl. Phys. 92 (2002) 1675–1689.

    Article  Google Scholar 

  5. W. Liu, G.X. Wang, E.F. Matthys, Int. J. Heat Mass Transfer 38 (1995) 1387–1395.

    Article  Google Scholar 

  6. Z. Zhao, D. Poulikakos, J. Fukai, Int. J. Heat Mass Transfer 39 (1996) 2771–2789.

    Article  Google Scholar 

  7. S. Shakeri, Effect of substrate properties on molten metal droplet impact, University of Toronto, Toronto, Canada, 2001.

    Google Scholar 

  8. S. Shakeri, S. Chandra, Int. J. Heat Mass Transfer 45 (2002) 4561–4575.

    Article  Google Scholar 

  9. D. Attinger, Z. Zhao, D. Poulikakos, J. Heat Transfer 122 (2000) 544–556.

    Article  Google Scholar 

  10. S.D. Aziz, S. Chandra, Int. J. Heat Mass Transfer 43 (2000) 2841–2857.

    Article  Google Scholar 

  11. S. Kamnis, S. Gu, J. Phys. D Appl. Phys. 38 (2005) 3664.

    Article  Google Scholar 

  12. S. Goutier, M. Vardelle, P. Fauchais, J. Therm. Spray Technol. 21 (2012) 522–530.

    Article  Google Scholar 

  13. F.H. Harlow, J.P. Shannon, J. Appl. Phys. 38 (1967) 3855–3866.

    Article  Google Scholar 

  14. T. Bennett, D. Poulikakos, J. Mater. Sci. 29 (1994) 2025–2039.

    Article  Google Scholar 

  15. B. Kang, Z. Zhao, D. PouLikakos, J. Heat Tranfer 116 (1994) 436–445.

    Article  Google Scholar 

  16. H. Liu, E.J. Lavernia, R.H. Rangel, J. Phys. D Appl. Phys. 26 (1993) 1900.

    Article  Google Scholar 

  17. A. Kumar, S. Ghosh, B.K. Dhindaw, Acta Mater. 58 (2010) 122–133.

    Article  Google Scholar 

  18. J.B. Lee, D. Derome, A. Dolatabadi, J. Carmeliet, Langmuir 32 (2016) 1279–1288.

    Article  Google Scholar 

  19. Z. Zhao, D. Poulikakos, J. Fukai, Int. J. Heat Mass Transfer 39 (1996) 2791–2802.

    Article  Google Scholar 

  20. S. LeClear, J. LeClear, Abhijeet, K.C. Park, W. Choi, J. Colloid Interface Sci. 461 (2016) 114–121.

    Article  Google Scholar 

  21. Y. Yao, C. Li, H. Zhang, R. Yang, Appl. Surf. Sci. 419 (2017) 52–62.

    Article  Google Scholar 

  22. G. Liang, Y. Guo, Y. Yang, N. Zhen, S. Shen, Acta Mech. 224 (2013) 2993–3004.

    Article  Google Scholar 

  23. Š. Šikalo, C. Tropea, E.N. Ganić, J. Colloid Interface Sci. 286 (2005) 661–669.

    Article  Google Scholar 

  24. M. Pasandideh-Fard, S. Chandra, J. Mostaghimi, Int. J. Heat Mass Transfer 45 (2002) 2229–2242.

    Article  Google Scholar 

  25. M. Bussmann, J. Mostaghimi, S. Chandra, Phys. Fluids 11 (1999) 1406–1417.

    Article  Google Scholar 

  26. Z. Jin, Z. Wang, D. Sui, Z. Yang, Int. J. Heat Mass Transfer 97 (2016) 211–223.

    Article  Google Scholar 

  27. C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39 (1981) 201–225.

    Article  Google Scholar 

  28. V.R. Voller, C. Prakash, Int. J. Heat Mass Transfer 30 (1987) 1709–1719.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the National Key Research and Development Program of China (2016YFB061101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-ping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Cp., Li, Bj., Wang, L. et al. Numerical simulation of impact and solidification of melting dust on spherical bead surface and experimental validation. J. Iron Steel Res. Int. 26, 679–690 (2019). https://doi.org/10.1007/s42243-019-00292-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00292-0

Keywords

Navigation