Skip to main content
Log in

Modification mechanism of caking and coking properties of Shenmu subbituminous coal by low-temperature rapid pyrolysis treatment

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Shenmu (SM) subbituminous coal without caking property was treated by low-temperature rapid pyrolysis (LTRP) to modify its caking and coking properties. The treated samples were characterized by Fourier transform infrared spectrometry, vitrinite reflectance, and X-ray diffraction to determine the modification mechanism. Moreover, caking index (G) and coking indices (mechanical strength, coke reactivity, and coke strength after reaction) were employed to evaluate caking and coking properties, respectively. The results showed that SM coal was gradually upgraded with increasing processing temperature. Furthermore, the G values for the treated samples were significantly higher than that for SM coal, and G reached the maximum value at 450 °C, implying the modification of caking property and the existence of an optimum temperature (450 °C). Additionally, laboratory coking determinations showed that LTRP increased the mechanical strength of coke and coke strength after reaction and decreased coke reactivity when the treated coals were used in the coal blends instead of raw SM coal. Overall, LTRP treatment is effective to improve the caking and coking properties of SM coal. A mechanism was proposed for the modification. Suitable upgrading degree with suitable molecular masses and some releasable hydrogen-rich donor species present within the coal, which dominate the development of caking property, is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.P. Tiwari, P.K. Banerjee, V.K. Saxena, S.K. Haldar, J. Iron Steel Res. Int. 21 (2014) 673–678.

    Article  Google Scholar 

  2. H.B. Zuo, S.Y. Long, J.S. Wang, W.T. Guo, J. Iron Steel Res. Int. 25 (2018) 378–386.

    Article  Google Scholar 

  3. H.F. Shui, F. He, Y. Wu, C.X. Pan, Z.C. Wang, Z.P. Lei, S.B. Ren, S.G. Kang, Energy Fuels 29 (2015) 1558−1563.

    Article  Google Scholar 

  4. H.F. Shui, H.P. Li, H.T. Chang, Z.C. Wang, Z. Gao, Z.P. Lei, S.B. Ren, Fuel Process. Technol. 92 (2011) 2299–2304.

    Article  Google Scholar 

  5. H.F. Shui, Y. Wu, Z.C. Wang, Z.P. Lei, C.H. Lin, S.B. Ren, C.X. Pan, S.G. Kang, Energy Fuels 27 (2013) 138–144.

    Article  Google Scholar 

  6. Y.Q. Zhao, M. Zhang, X.T. Cui, D.L. Dong, Q. Wang, Y.F. Zhang, Fuel 167 (2016) 1–8.

    Article  Google Scholar 

  7. A. Koszorek, M. Krzesińska, S. Pusz, B. Pilawa, B. Kwiecińska, Int. J. Coal Geol. 77 (2009) 363–371.

    Article  Google Scholar 

  8. R. Sakurovs, L.L. Lynch, Fuel 72 (1993) 743–749.

    Article  Google Scholar 

  9. H.F. Shui, M.D. Zheng, Z.C. Wang, X.M. Li, Fuel 86 (2007) 1396–1401.

    Article  Google Scholar 

  10. C.Z. Li, Advances in the science of Victorian brown coal, Elsevier, Amsterdam, The Netherlands, 2004.

    Google Scholar 

  11. D.K. Mukherjee, A.N. Sengupta, D.P. Choudhury, P.K. Sanyal, S.R. Rudra, Fuel 75 (1996) 477−482.

    Article  Google Scholar 

  12. S. Nomura, K.M. Thomas, Fuel 77 (1998) 829–836.

    Article  Google Scholar 

  13. K. Fukada, S. Itagaki, I. Shimoyama, ISIJ Int. 46 (2006) 1603–1609.

    Article  Google Scholar 

  14. J.D. Kim, J.S. Roh, M.S. Kim, Carbon Lett. 21 (2017) 51–60.

    Article  Google Scholar 

  15. S. Ragan, H. Marsh, Fuel 60 (1981) 522–528.

    Article  Google Scholar 

  16. U. Świetlik, G. Gryglewicz, H. Machnikowska, J. Machnikowski, C. Barriocanal, R. Alvarez, M.A. Díez, J. Anal. Appl. Pyrol. 52 (1999) 15–31.

    Article  Google Scholar 

  17. H.W. Dai, L. Zhen, Low-rank coal and the new classification of coal, Geological Publishing House, Beijing, China, 1988.

    Google Scholar 

  18. X.F. Feng, C. Zhang, P. Tan, X.P. Zhang, Q.Y. Fang, G. Chen, Fuel 185 (2016) 112–121.

    Article  Google Scholar 

  19. X.C. Liu, T. Hirajima, M. Nonaka, K. Sasaki, Dry. Technol. 34 (2016) 1471–1483.

    Article  Google Scholar 

  20. B. Tian, Y.Y. Qiao, Y.Y. Tian, K.C. Xie, D.W. Li, Appl. Therm. Eng. 109 (2016) 560–568.

    Article  Google Scholar 

  21. J.J. Pis, A. Cagigas, P. Simón, J.J. Lorenzana, Fuel Process. Technol. 20 (1988) 307–316.

    Article  Google Scholar 

  22. M.A. Díez, R. Alvarez, C. Barriocanal, Int. J. Coal Geol. 50 (2002) 389–412.

    Article  Google Scholar 

  23. S.F. Zhang, H.J. Peng, X. Zhang, W. Liu, L.Y. Wen, G.B. Qiu, Fuel Process. Technol. 129 (2015) 174–182.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (No. 21776002), Natural Science Foundation of Anhui Provincial Education Department (Nos. KJ2016A097 and KJ2017A056), Innovation Project of Overseas People of Anhui Province, Student Research Training Program of Anhui Province (201810360190), and Youth Natural Science Foundation of Anhui University of Technology (No. QZ201806) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-chun Liu or Ping Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xc., Fang, B., Zhao, Zg. et al. Modification mechanism of caking and coking properties of Shenmu subbituminous coal by low-temperature rapid pyrolysis treatment. J. Iron Steel Res. Int. 26, 1052–1060 (2019). https://doi.org/10.1007/s42243-019-00261-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00261-7

Keywords

Navigation