Improvement of proof-ultimate strength difference in laser additive manufactured Ti–6Al–2V–1.5Mo–0.5Zr–0.3Si alloy by tuning basket-weave structure

  • Guo-chao Li
  • Xu ChengEmail author
  • Hua-ming Wang
Original Paper


After annealed at 1000 °C, a special basket-weave structure is obtained in laser additive manufactured Ti–6Al–2V–1.5Mo–0.5Zr–0.3Si alloy. The unit of the special basket-weave structure is α lamellas clusters, which consist of lamellar primary α (αp), crab-like structures at the edges of αp and lamellar secondary α (αs) on both sides of αp. As the units of basket-weave structures, the width of the clusters is much larger than that of α lamellas in as-deposited alloy. The formation temperature and process of the special basket-weave structure are studied, and the room temperature properties are tested and compared with the as-deposited alloy. The results show that the formation of the special basket-weave structure finishes within about 30 s and crab-like structures form earlier than lamellar αs. The yield strength of the alloy is decreased by about 75 MPa compared to that of the as-deposited alloy. Besides, the proof-ultimate strength difference of the alloy is two times higher than that of the as-deposited alloy with about 34% improvement for the impact toughness. It is because α colony size shows a positive correlation to the width of the unit forming basket-weave structure. The enhancement in proof-ultimate strength difference could significantly improve the toughness of the alloy, and thus effectively increase the safety of the alloy.


Titanium alloy Basket-weave structure Formation process α colony size Yield strength 



This work was supported by the Beijing Natural Science Foundation (grant No. Z140002) and Beijing Science and Technology Plan of China (grant No. Z17100000817002).


  1. [1]
    G. Lutjering, J.C. Willams, Titanium, 2nd edition, Springer, Berlin, Germany, 2007.Google Scholar
  2. [2]
    C. Leyens, M. Peter, Titanium and titanium alloys, Die Deutsche Bibliothek, Weinheim, Germany, 2006.Google Scholar
  3. [3]
    D. Banerjeea, J.C. Willams, Acta Mater. 61 (2013) 844–879.CrossRefGoogle Scholar
  4. [4]
    Y.H. Fei, L. Zhou, H.L. Qu, Y.Q. Zhao, C.Z. Huang, Mater. Sci. Eng. A 494 (2008) 166–172.CrossRefGoogle Scholar
  5. [5]
    H. Shao, D. Shan, Y.Q. Zhao, P. Ge, W.D. Zeng, Mater. Sci. Eng. A 664 (2016) 10–16.CrossRefGoogle Scholar
  6. [6]
    W.F. Zhang, C.X. Cao, X.W. Li, J.M. Ma, Z.S. Zhu, Rare Metal Mater. Eng. 34 (2005) 549–551.Google Scholar
  7. [7]
    S.H. Chen, J.H. Huang, D.H. Cheng, H. Zhang, X.K. Zhao, Mater. Sci. Eng. A 541(2012) 110–119.CrossRefGoogle Scholar
  8. [8]
    S.H. Chen, M.X. Zhang, J.H. Huang, C.J. Cui, H. Zhang, X.K. Zhao, Mater. Des. 53 (2014) 504–511.CrossRefGoogle Scholar
  9. [9]
    H.M. Wang, Acta Aeronaut. Astronaut. Sin. 35 (2014) 2690–2698.Google Scholar
  10. [10]
    T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang, J. Alloy. Compd. 632 (2015) 505–513.CrossRefGoogle Scholar
  11. [11]
    B. Dutta, F.H. Froes, Met. Powder Rep. 72 (2017) 96–106.CrossRefGoogle Scholar
  12. [12]
    C.V. Mikler, V. Chaudhary, T. Borkar, V. Soni, D. Jaeger, X. Chen, R. Contieri, R.V. Ramanujan, R. Banerjee, JOM 69 (2017) 532–543.CrossRefGoogle Scholar
  13. [13]
    S.E. Zeltmann, N. Gupta, N.G. Tsoutsos, M. Maniatakos, J. Rajendran, R. Karri, JOM 68 (2016) 1872–1881.CrossRefGoogle Scholar
  14. [14]
    E.D. Herderick, JOM 68 (2016) 721–723.CrossRefGoogle Scholar
  15. [15]
    C.M. Liu, X.J. Tian, H.B. Tang, H.M. Wang, J. Alloy. Compd. 572 (2013) 17–24.CrossRefGoogle Scholar
  16. [16]
    S.M. Kelly, S.L. Kampe, Metall. Mater. Trans. A 35 (2004) 1861–1867.CrossRefGoogle Scholar
  17. [17]
    G.J. Marshall, W.J. Young, S.M. Thompson, N. Shamsaei, S.R. Daniewicz, S. Shao, JOM 68 (2016) 778–790.CrossRefGoogle Scholar
  18. [18]
    J. Li, H.M. Wang, Mater. Sci. Eng. A 560 (2013) 193–199.CrossRefGoogle Scholar
  19. [19]
    Y. Lu, H.B. Tang, Y.L. Fang, D. Liu, H.M. Wang, Mater. Des. 37 (2012) 56–63.CrossRefGoogle Scholar
  20. [20]
    Y.Y. Zhu, D. Liu, X.J. Tian, H.B. Tang, H.M. Wang, Mater. Des. 56 (2014) 445–453.CrossRefGoogle Scholar
  21. [21]
    C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, D. Liu, Mater. Sci. Eng. A 586 (2013) 323–329.CrossRefGoogle Scholar
  22. [22]
    A.H. Baker, P.C. Collins, J.C. Williams, JOM 69 (2017) 1221–1227.CrossRefGoogle Scholar
  23. [23]
    G.C. Li, J. Li, X.J. Tian, X. Cheng, B. He, H.M. Wang, Mater. Sci. Eng. A 684 (2017) 233–238.CrossRefGoogle Scholar
  24. [24]
    H.I. Aaronson, G. Spanos, R.A. Masamura, R.G. Vardiman, D.W. Moon, E.S.K. Menon, M.G. Hall, Mater. Sci. Eng. B 32 (1995) 107–123.CrossRefGoogle Scholar
  25. [25]
    Z. Li, J. Li, J. Liu, D. Liu, H.M. Wang, J. Alloy. Compd. 657 (2016) 278–285.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.National Engineering Laboratory of Additive Manufacturing for Large Metallic Components and Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Components, School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Beijing Yuding Additive Manufacturing Research Institute Co., Ltd.BeijingChina

Personalised recommendations