Deformation mechanism analysis of roll forming for Q&P980 steel based on finite element simulation


Roll forming is a sheet metal forming process, which can form the profiles gradually to improve the formability of Q&P980 steel. The plastic deformation mechanism of roll forming was expounded by analysing the stress and strain distribution at the corner of a hat-type profile when the Q&P980 steel sheet passed through a series of continuous stands. And the plastic deformation mainly accumulated when the sheet metal was not in contact with the rolls. A simple mathematical model was derived by considering the longitudinal bending strain and the geometrical relationships of forming parameters, to analyse the longitudinal strain development in the deformation process. In addition, the roll forming experiments on hat-type profile parts of Q&P980 steel were carried out, and the theoretical analysis and simulation results are consistent with the experimental results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. [1]

    L. Komgrit, H. Hamasaki, R. Hino, F. Yoshida, J. Mater. Process. Technol. 229 (2016) 199–206.

    Article  Google Scholar 

  2. [2]

    J.Y. Lee, F. Barlat, M.G. Lee, Int. J. Plast. 71 (2015) 113–135.

    Article  Google Scholar 

  3. [3]

    A. Ghaei, D.E. Green, A. Aryanpour, Mater. Des. 88 (2015) 461–470.

    Article  Google Scholar 

  4. [4]

    W.J. Oh, C.M. Lee, Int. J. Precis. Eng. Manuf. 19 (2018) 299–302.

    Article  Google Scholar 

  5. [5]

    M. Weiss, J. Marnette, P. Wolfram, J. Larrañaga, P. Hodgson, Key Eng. Mater. 504–506 (2012) 797–802.

    Article  Google Scholar 

  6. [6]

    K. Mäntyjärvi, M. Merklein, J.A. Karjalainen, Key Eng. Mater. 410–411 (2009) 661–668.

    Article  Google Scholar 

  7. [7]

    M. Lundberg, A. Melander, in: IDDRG 2008 International Conference, Olofström, Sweden, 2008, pp. 331–338.

  8. [8]

    M. Kiuchi, T. Koudabashi, F. Etou, Seisan Kenkyu 34 (1982) 339–342.

    Google Scholar 

  9. [9]

    M. Kiuchi, K. Abe, R. Onodera, CIRP Ann. 44 (1995) 239–242.

    Article  Google Scholar 

  10. [10]

    C.F. Liu, W.L. Zhou, X.S. Fu, G.Q. Chen, Int. J. Adv. Manuf. Technol. 79 (2015) 1055–1061.

    Article  Google Scholar 

  11. [11]

    B.D. Joo, S.W. Han, S.G.R. Shin, Y.H. Moon, Int. J. Automot. Technol. 16 (2015) 83–88.

    Article  Google Scholar 

  12. [12]

    X.L. Liu, J.G. Cao, X.T. Chai, Z.L. He, J. Liu, R.G. Zhao, Int. J. Adv. Manuf. Technol. 95 (2018) 1837–1848.

    Article  Google Scholar 

  13. [13]

    B. Abeyrathna, B. Rolfe, M. Weiss, Int. J. Adv. Manuf. Technol. 92 (2017) 743–754.

    Article  Google Scholar 

  14. [14]

    R. Safdarian, H.M. Naeini, Thin. Wall. Struct. 92 (2015) 130–136.

    Article  Google Scholar 

  15. [15]

    J. Paralikas, K. Salonitis, G. Chryssolouris, Int. J. Adv. Manuf. Technol. 56 (2011) 475–491.

    Article  Google Scholar 

  16. [16]

    A. Abvabi, B. Rolfe, P.D. Hodgson, M. Weiss, Int. J. Mech. Sci. 101–102 (2015) 124–136.

    Article  Google Scholar 

  17. [17]

    X.L. Liu, J.G. Cao, X.T. Chai, J. Liu, R.G. Zhao, N. Kong, J. Manuf. Process. 29 (2017) 289–297.

    Article  Google Scholar 

  18. [18]

    J.H. Wiebenga, M. Weiss, B. Rolfe, A.H. van den Boogaard, J. Mater. Process. Technol. 213 (2013) 978–986.

    Article  Google Scholar 

  19. [19]

    G. Zeng, S.H. Li, Z.Q. Yu, X.M. Lai, Mater. Des. 30 (2009) 1930–1938.

    Article  Google Scholar 

  20. [20]

    F. Han, L.L. Niu, Y. Wang, Y.H. Yang, Chin. J. Mech. Eng. 52 (2018) 131–137.

    Article  Google Scholar 

  21. [21]

    D. Bhattacharyya, P.D. Smith, C.H. Yee, L.F. Collins, J. Mech. Work. Tech. 9 (1984) 181–191.

    Article  Google Scholar 

  22. [22]

    S.M. Panton, S.D. Zhu, J.L. Duncan, P. I. Mech. Eng. B-J. Eng. 206 (1992) 113–118.

    Google Scholar 

  23. [23]

    S.D. Zhu, Theoretical and experimental analysis of roll forming, University of Auckland, New Zealand, 1993.

    Google Scholar 

  24. [24]

    M. Lindgren, J. Mater. Process. Technol. 186 (2007) 77–81.

    Article  Google Scholar 

  25. [25]

    M. Lindgren, Experimental and computational investigation of the roll forming process, Luleå University of Technology, Luleå, 2009.

    Google Scholar 

  26. [26]

    B. Abeyrathna, B. Rolfe, P. Hodgson, M. Weiss, Int. J. Adv. Manuf. Technol. 88 (2017) 2405–2415.

    Article  Google Scholar 

Download references


The authors are grateful to the National Natural Science Foundation of China (NSFC) (Nos. 50905001 and 51074204), Beijing Municipal Natural Science Foundation (No. 3112010) and Beijing Municipal Natural Science Foundation–Beijing Municipal Education Commission (No. KZ201910009011) for their financial support. Also, thanks are given to the Beijing Youth Talent Support Program (No. 2014000026833ZK12) and Yujie Talent Support Program of North China University of Technology (No. 18XN154-005).

Author information



Corresponding author

Correspondence to Fei Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, F., Wang, Y. & Niu, L. Deformation mechanism analysis of roll forming for Q&P980 steel based on finite element simulation. J. Iron Steel Res. Int. 26, 1178–1187 (2019).

Download citation


  • Roll forming
  • Numerical simulation
  • Q&P980 steel
  • Deformation area