Skip to main content
Log in

Control of wall thickness and surface morphology of tungsten thin wall parts by adjusting selective laser melting parameters

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The tungsten thin wall parts which were used as high-performance collimator devices were fabricated by optimizing selective laser melting laser parameters. The effect of laser power and scan rate on wall thickness and surface morphology of tungsten thin wall parts was investigated, respectively. The results indicated that the wall thickness increased with the enhancement in laser power as a linear relationship. On the contrary, the wall thickness decayed exponentially with the acceleration in laser scan rate. Meanwhile, the wall thickness of the parts fabricated by laser double-pass melting was thinner than that fabricated by laser single-pass melting. In addition, mathematic models for selecting suitable laser power and laser scan rate to fabricate specified tungsten thin wall parts were proposed. Furthermore, the effects of laser parameters on the top surface roughness, adhesive parts and hot cracks were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Appl. Phys. Rev. 2 (2015) 041101.

    Article  Google Scholar 

  2. I. Yadroitsev, I. Smurov, Phys. Procedia 5 (2010) 551–560.

    Article  Google Scholar 

  3. K.A. Mumtaz, N. Hopkinson, J. Mater. Process. Technol. 210 (2010) 279–287.

    Article  Google Scholar 

  4. K. Deprez, S. Vandenberghe, K. Van Audenhaege, J. Van Vaerenbergh, R. Van Holen, Med. Phys. 40 (2013) 012501.

    Article  Google Scholar 

  5. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, J. Mater. Process. Technol. 149 (2004) 616–622.

    Article  Google Scholar 

  6. G. Strano, L. Hao, R.M. Everson, K.E. Evans, J. Mater. Process. Technol. 213 (2013) 589–597.

    Article  Google Scholar 

  7. X. Zhou, X.H. Liu, D.D. Zhang, Z.J. Shen, W. Liu, J. Mater. Process. Technol. 222 (2015) 33–42.

    Article  Google Scholar 

  8. K. Kempen, L. Thijs, J.V. Humbeeck, J.P. Kruth, in: M. Schmidt, F. Vollertsen, M. Geiger (Eds.), 7th Conference on Laser Assisted Net Shape Engineering (LANE), Elsevier, 2012, pp. 439–446.

  9. E. Louvis, P. Fox, C.J. Sutcliffe, J. Mater. Process. Technol. 211 (2011) 275–284.

    Article  Google Scholar 

  10. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater. Sci. 74 (2015) 401–477.

    Article  Google Scholar 

  11. L.C. Zhang, H. Attar,  Adv. Eng. Mater. 18 (2016) 463–475.

    Article  Google Scholar 

  12. M. Badrossamay, T.H.C. Childs, Int. J. Mach. Tools Manu. 47 (2007) 779–784.

    Article  Google Scholar 

  13. I. Yadroitsev, L. Thivillon, P. Bertrand, I. Smurov, Appl. Surf. Sci. 254 (2007) 980–983.

    Article  Google Scholar 

  14. S.C. Moore, K. Kouris, I. Cullum, Eur. J. Nucl. Med. 19 (1992) 138–150.

    Article  Google Scholar 

  15. A.V. Gusarov, I. Yadroitsev, P. Bertrand, I. Smurov, Appl. Surf. Sci. 254 (2007) 975–979.

    Article  Google Scholar 

  16. S. Kou, Welding metallurgy, 2nd edition, John Wiley & Sons, Inc, New Jersey, 2003.

    Google Scholar 

  17. D.Z. Wang, C.F. Yu, X. Zhou, J. Ma, W. Liu, Z.J. Shen, Appl. Sci. 430 (2017) 1–13.

    Google Scholar 

  18. L. Lu, J.Y.H. Fuh, Y.S. Wong, Laser-induced materials and processes for rapid prototyping, Springer US, New York, 2001.

    Book  Google Scholar 

  19. Z.H. Rao, J. Zhou, S.M. Liao, H.L. Tsai, J. Appl. Phys. 107 (2010) 054905.

    Article  Google Scholar 

  20. Y.Z. Li, P. Xiao, X.H. Zhu, Q.G. Xie, Phys. Med. Biol. 61 (2016) 5390–5405.

    Article  Google Scholar 

  21. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108 (2016) 36–45.

    Article  Google Scholar 

  22. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, Phys. Procedia 12 (2011) 271–278.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key R&D Program of China (2016YFB1101102, 2016YFB1101100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Yj., Yang, Hc., Wang, Xb. et al. Control of wall thickness and surface morphology of tungsten thin wall parts by adjusting selective laser melting parameters. J. Iron Steel Res. Int. 26, 182–190 (2019). https://doi.org/10.1007/s42243-019-00234-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00234-w

Keywords

Navigation