Advertisement

Oxidation behavior and lifetime prediction of three commercial alloys used in power plants at 550 °C in CO2 environment

  • Mohammad Hassan Shirani Bidabadi
  • Yu Zheng
  • Abdul Rehman
  • Chi Zhang
  • Hao Chen
  • Peggy Hou
  • Zhi-gang YangEmail author
Original Paper
  • 23 Downloads

Abstract

The oxidation behaviors of CrMoV, F91, and 310S alloys in CO2 at 550 °C for up to 1000 h were studied by weight change measurements, scanning electron microscopy, X-ray diffraction, Raman microscopy, optical microscopy, and glow discharge optical emission spectroscopy. 310S showed the best oxidation resistance followed by F91 and then CrMoV. Both CrMoV and F91 formed a duplex oxide layer, consisted of Fe2O3, Fe3O4, and Fe–Cr spinel, while 310S formed NiFe2O4 spinel and Cr2O3. Carburization was only observed in F91 and 310S alloys. The rates of metal loss were evaluated for long-term applications in power plants.

Keywords

Low-alloy steel 9Cr steel Stainless steel High-temperature corrosion Carburization 

Notes

Acknowledgements

This work was supported by the National Magnetic Confinement Fusion Energy Research Project of China (2015GB118001) and Tsinghua University Initiative Scientific Research Program. The authors also would like to thank Beijing Shougang Co., Ltd. for GDOES analysis.

References

  1. [1]
    M.P. Boyce, Gas turbine engineering handbook, 2nd ed., Gulf Professional Publishing, USA, 2002.Google Scholar
  2. [2]
    T. Kishi, Materials outlook for energy and environment, New material science of the 21st century towards the solution of energy and environment issues, National Institute for Materials Science (NIMS), Japan, 2008.Google Scholar
  3. [3]
    T. Pikkarainen, A. Tourunen, J. Hämäläinen, Energy Mater. 2 (2007) 78–83.CrossRefGoogle Scholar
  4. [4]
    B.J.P. Buhre, L.K. Elliott, C.D. Sheng, R.P. Gupta, T.F. Wall, Prog. Energy Combust. Sci. 31 (2005) 283–307.CrossRefGoogle Scholar
  5. [5]
    P. Promdirek, G. Lothongkum, S. Chandra-Ambhorn, Y. Wouters, A. Galerie, Oxid. Met. 81 (2014) 315–329.CrossRefGoogle Scholar
  6. [6]
    D. Young, P. Huczkowski, T. Olszewski, T. Hüttel, L. Singheiser, W.J. Quadakkers, Corros. Sci. 88 (2014) 161–169.CrossRefGoogle Scholar
  7. [7]
    K. Kaya, S. Hayashi, S. Ukai, ISIJ Int. 54 (2014) 1379–1385.CrossRefGoogle Scholar
  8. [8]
    T. Gheno, D. Monceau, J. Zhang, D.J. Young, Corros. Sci. 53 (2011) 2767–2777.CrossRefGoogle Scholar
  9. [9]
    B.A. Pint, J.K. Thomson, Mater. Corros. 65 (2014) 132–140.CrossRefGoogle Scholar
  10. [10]
    F. Rouillard, G. Moine, L. Martinelli, J.C. Ruiz, Oxid. Met. 77 (2012) 27–55.CrossRefGoogle Scholar
  11. [11]
    G.H. Meier, K. Jung, N. Mu, N.M. Yanar, F.S. Pettit, J. Pirón Abellán, T. Olszewski, L. Nieto Hierro, W.J. Quadakkers, G.R. Holcomb, Oxid. Met. 74 (2010) 319–340.Google Scholar
  12. [12]
    T.C. Totemeier, H. Tian, J.A. Simpson, Metall. Mater. Trans. A 37 (2006) 1519–1525.CrossRefGoogle Scholar
  13. [13]
    Z.J. Wang, F.H. Sun, G.W. Zhao, Adv. Mater. Res. 53–54 (2008) 397–402.CrossRefGoogle Scholar
  14. [14]
    W.T. Tsai, K.E. Huang, Thin Solid Films 366 (2000) 164–168.CrossRefGoogle Scholar
  15. [15]
    S. Frangini, S. Loreti, J. Power Sources 160 (2006) 800–804.CrossRefGoogle Scholar
  16. [16]
    G. Golański, I. Pietryka, J. Słania, S. Mroziński, J. Jasak, Arch. Metall. Mater. 61 (2016) 51–54.CrossRefGoogle Scholar
  17. [17]
    G.L. Dunlop, R.W.K. Honeycombe, Met. Sci. 10 (1976) 124–132.CrossRefGoogle Scholar
  18. [18]
    G. Golanski, P. Wieczorek, Arch. Found. Eng. 9 (2009) 97–102.Google Scholar
  19. [19]
    D.L.A. de Faria, S. Venâncio Silva, M.T. de Oliveira, J. Raman Spectrosc. 28 (1997) 873–878.Google Scholar
  20. [20]
    Mineral spectra collected at the Physics Department of the University of Parma, Mineral Raman DataBase, https://www.fis.unipr.it/phevix/ramandb.php?plot=Magnetite1&submit=Go.
  21. [21]
    L. Liu, Z.G. Yang, C. Zhang, M. Ueda, K. Kawamura, T. Maruyama, Corros. Sci. 60 (2012) 90–97.CrossRefGoogle Scholar
  22. [22]
    K.F. McCarty, D.R. Boehme, J. Solid State Chem. 79 (1989) 19–27.CrossRefGoogle Scholar
  23. [23]
    D.A. Brown, D. Cunningham, W.K. Glass, Spectrochimica Acta Part A: Molecular Spectroscopy 24 (1968) 965–968.CrossRefGoogle Scholar
  24. [24]
    M. Kemdehoundja, J.L. Grosseau-Poussard, J.F. Dinhut, B. Panicaud, J. Appl. Phys. 102 (2007) 093513.CrossRefGoogle Scholar
  25. [25]
    A. Ahlawat, V.G. Sathe, J. Raman Spectrosc. 42 (2011) 1087–1094.CrossRefGoogle Scholar
  26. [26]
    J.E. Maslar, W.S. Hurst, W.J. Bowers, J.H. Hendricks, Corrosion 58 (2002) 739–747.CrossRefGoogle Scholar
  27. [27]
    M. da Cunha Belo, M. Walls, N.E. Hakiki, J. Corset, E. Picquenard, G. Sagon, D. Noël, Corros. Sci. 40 (1998) 447–463.Google Scholar
  28. [28]
    T. Gheno, D. Monceau, D.J. Young, Corros. Sci. 77 (2013) 246–256.CrossRefGoogle Scholar
  29. [29]
    T.A. Ramanarayanan, R.A. Petkovic, J.D. Mumford, A. Ozekcin, Mater. Corros. 49 (1998) 226–230.CrossRefGoogle Scholar
  30. [30]
    A. Rahmel, H.J. Grabke, W. Steinkusch, Mater. Corros. 49 (1998) 221–225.CrossRefGoogle Scholar
  31. [31]
    H.S. Khatak, B. Raj, Corrosion of austenitic stainless steels, mechanism, mitigation and monitoring, Woodhead Publishing, Cambridge, England, 2002.CrossRefGoogle Scholar
  32. [32]
    N. Birks, G.H. Meier, F.S.P. Pettit, Introduction to the high-temperature oxidation of metals, 2nd ed., Cambridge University Press, New York, US, 2006.CrossRefGoogle Scholar
  33. [33]
    T.D. Nguyen, J. Zhang, D.J. Young, Corros. Sci. 100 (2015) 448–465.CrossRefGoogle Scholar
  34. [34]
    D. Chaliampalias, G. Vourlias, E. Pavlidou, K. Chrissafis, J. Therm. Anal. Calorim. 113 (2013) 1309–1315.CrossRefGoogle Scholar
  35. [35]
    D. Huenert, A. Kranzmann, Corros. Sci. 53 (2011) 2306–2317.CrossRefGoogle Scholar
  36. [36]
    J. Pirón Abellán, T. Olszewski, H.J. Penkalla, G.H. Meier, L. Singheiser, W.J. Quadakkers, Mater. High Temp. 26 (2009) 63–72.Google Scholar
  37. [37]
    M.G. Hobby, G.C. Wood, Oxid. Met. 1 (1969) 23–54.CrossRefGoogle Scholar
  38. [38]
    T.D. Nguyen, J. Zhang, D.J. Young, Oxid. Met. 81 (2014) 549–574.CrossRefGoogle Scholar
  39. [39]
    S.R. Shatynski, Oxid. Met. 13 (1979) 105–118.CrossRefGoogle Scholar
  40. [40]
    H.W. Kirkby, Proceedings of the Institution of Mechanical Engineers 180 (1965) 1149–1165.CrossRefGoogle Scholar
  41. [41]
    J. Bolton, Mater. High Temp. 25 (2008) 197–204.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Mohammad Hassan Shirani Bidabadi
    • 1
  • Yu Zheng
    • 1
  • Abdul Rehman
    • 1
  • Chi Zhang
    • 1
  • Hao Chen
    • 1
  • Peggy Hou
    • 2
  • Zhi-gang Yang
    • 1
    Email author
  1. 1.Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Collaborative Innovation Center of Advanced Nuclear Energy TechnologyTsinghua UniversityBeijingChina
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations