Skip to main content
Log in

Influence rule of downtime on heat transfer in converters

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The models for calculating the heat transfer in converters allow the accurate control of heat dissipation caused by downtime, and thus help increase scrap ratio and reduce energy consumption. ANSYS 17 was used to establish such a model to analyse the coupling law between the downtime and heat dissipation of the converter and the temperature drop of molten iron. Temperature was measured by infrared detection, and model accuracy was verified by comparative analysis. The variation law of the amount of cold charge added for different downtimes under different process conditions was studied. The results show that the range of the variation of heat dissipation caused by downtime is 8.9–78.5 GJ. If the downtime increases by 30 min, heat dissipation of dephosphorisation (deP) and decarburisation (deC) converters increases by about 23.4 and 41.3 GJ, respectively. In a certain smelting cycle, the temperature drop of the molten iron for deP, deC and conventional converters increases by about 12.5, 15.0 and 17.0 K, respectively; and the amount of scrap added in the double-linking and conventional smelting processes decreases by 0.93 and 0.75%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.D. Pehlke, W.F. Porter, R.F. Urban, J.M. Gaines, BOF steelmaking, Iron and Steel Society of AIME, London, UK, 1977.

  2. K. Sahoo, G.V. Babu, P.N. Rao, S. Jee, in: AISTech-Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, Warrendale, USA, 2014, pp. 287–295.

  3. H. Sun, Y.C. Liu, M.J. Lu, Ironmak. Steelmak. 43 (2016) 697–704.

    Article  Google Scholar 

  4. Y. Lytvynyuk, J. Schenk, M. Hiebler, A. Sormann, Steel Res. Int. 85 (2014) 537–543.

    Article  Google Scholar 

  5. V.V. Visuri, M. Järvinen, P. Sulasalmi, E.P. Heikkinen, J. Savolainen, T. Fabritius, ISIJ Int. 53 (2013) 603–612.

    Article  Google Scholar 

  6. Y.I. Tseluiko, L.A. Vishnevskaya, G.F. Gul’ev, Refractories 6 (1965) 492–498.

    Article  Google Scholar 

  7. V.S. Bogushevskii, N.A. Sorokin, I.L. Ligotskii, Refractories 31 (1990) 211–219.

    Article  Google Scholar 

  8. É.A. Visloguzova, I.D. Kashcheev, K.G. Zemlyanoi, Refract. Ind. Ceram. 54 (2013) 83–87.

    Article  Google Scholar 

  9. H.J. Odenthal, U. Falkenreck, J. Schlüter, in: P. Wesseling, E. Oñate, J. Périaux (Eds.), Proc. European Conf. on Computational Fluid Dynamics, TU Delft, The Netherlands, 2006, pp. 1–21.

  10. H.J. Odenthal, U. Thiedemann, U. Falkenreck, J. Schlueter, Metall. Mater. Trans. B 41 (2010) 396–413.

    Article  Google Scholar 

  11. A.J. Yan, J. Wuhan Univ. Sci. Technol. 33 (2010) 255–258.

    Google Scholar 

  12. Z.L. Yang, G.J. Zhu, B.M. Wang, Steelmaking 21 (2005) No. 5, 50–53.

    Google Scholar 

  13. H. Li, Refractory handbook, Metallurgical Industry Press, Beijing, China, 2007.

  14. J. Chen, Handbook of common chart data for steelmaking process, Metallurgical Industry Press, Beijing, China, 1984.

  15. O. Volkova, D. Janke, ISIJ Int. 43 (2003) 1185–1190.

    Article  Google Scholar 

  16. G. Li, J. Liu, G. Jiang, H. Liu, Adv. Mech. Eng. 7 (2015) 1687814015575988.

  17. F. Yuan, A.J. Xu, D.F. He, H.B. Wang, J. Harbin Inst. Technol. 48 (2016) No. 7, 176–181.

    Google Scholar 

  18. G. Solorio-Diaz, R. Davila-Morales, J. de Jesus Barreto-Sandoval, H.J. Vergara-Hernández, A. Ramos-Banderas, S.R. Galvan, Steel Res. Int. 85 (2014) 863–874.

    Article  Google Scholar 

  19. S.W.P. Cloete, J.J. Eksteen, S.M. Bradshaw, Miner. Eng. 46–47 (2013) 16–24.

    Article  Google Scholar 

  20. N.K. Nath, K. Mandal, A.K. Singh, B. Basu, C. Bhanu, S. Kumar, A. Ghosh, Ironmak. Steelmak. 33 (2006) 140–150.

    Article  Google Scholar 

  21. D. Gruber, H. Harmuth, Steel Res. Int. 79 (2008) 913–917.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant Nos. 51674030 and 51574032) and the National Key Research and Development Program of China (Grant No. 2016YFB0601301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-jun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Xu, Aj. & Yin, Ry. Influence rule of downtime on heat transfer in converters. J. Iron Steel Res. Int. 26, 251–258 (2019). https://doi.org/10.1007/s42243-018-0211-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0211-3

Keywords

Navigation