Skip to main content
Log in

High-temperature fracture behavior of MnS inclusions based on GTN model

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson–Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image analysis method using ABAQUS and GTN models. The modified GTN damage model was used to simulate the initiation and propagation of cracks in an as-cast 304 stainless steel with MnS inclusions at 900 °C. The simulation results agreed well with the experimental results, indicating that the model can be effectively applied to examine the high-temperature fracture behavior of MnS inclusions. The simulation and high-temperature tensile test results revealed that MnS inclusions increased the number of holes initiation and the probability of hole polymerization, reduced the crack propagation resistance, accelerated the occurrence of material fracture behavior, and were closely related to the stress state at high temperatures. When the stress triaxiality was low, the plastic strain in the metal matrix was high, and the MnS plastic inclusions accelerated the polymerization of the pores, making metal fracture failure more likely. On the other hand, when the stress triaxiality was high, the stress state in the metal matrix was biased to the tensile state, the plastic strain in the metal matrix was low, and the influence of MnS plastic inclusions on the fracture behavior was not evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Daly, T.L. Burnett, E.J. Pickering, O.C.G. Tuck, F. Léonard, R. Kelley, P.J. Withers, A.H. Sherry, Acta Mater. 130 (2017) 56–68.

    Article  Google Scholar 

  2. Y. Neishi, T. Makino, N. Matsui, H. Matsumoto, M. Higashida, H. Ambai, Metall. Mater. Trans. A 44 (2013) 2131–2140.

    Article  Google Scholar 

  3. S.K. Paul, A. Ray, J. Mater. Eng. Perform. 6 (1997) 27–34.

    Article  Google Scholar 

  4. R.S. Qi, M. Jin, X.G. Liu, B.F. Guo, J. Iron Steel Res. Int. 23 (2016) 531–538.

    Article  Google Scholar 

  5. L.Y. Wang, L. Li, J. Mater. Eng. Perform. 26 (2017) 3831–3838.

    Article  Google Scholar 

  6. M. Abbasi, M.A. Shafaat, M. Ketabchi, D.F. Haghshenas, M. Abbasi, J. Mech. Sci. Technol. 26 (2012) 345–352.

    Article  Google Scholar 

  7. Y.R. Oh, H.S. Nam, Y.J. Kim, N. Miura, Int. J. Press. Vessels Pip. 159 (2018) 35–44.

    Article  Google Scholar 

  8. S. Gatea, H. Ou, B. Lu, G. McCartney, Eng. Fract. Mech. 186 (2017) 59–79.

    Article  Google Scholar 

  9. L. Malcher, F.M.A. Pires, J.M.A.C. de Sá, Int. J. Plast. 54 (2014) 193–228.

    Article  Google Scholar 

  10. G. Perrin, J.B. Leblond, Int. J. Plast. 16 (2000) 91–120.

    Article  Google Scholar 

  11. V. Tvergaard, J. Mech. Phys. Solids 44 (1996) 1237–1253.

    Article  Google Scholar 

  12. J. Zhang, H.C. Kwon, H.Y. Kim, S.M. Byon, H.D. Park, Y.T. Im, J. Mater. Process. Technol. 162 (2005) 447–453.

    Article  Google Scholar 

  13. R. Kiran, K. Khandelwal, Fatigue Fract. Eng. Mater. Struct. 37 (2014) 171–183.

    Article  Google Scholar 

  14. M.S. Joun, J.G. Eom, M.C. Lee, Mech. Mater. 40 (2008) 586–593.

    Article  Google Scholar 

  15. Y. Zhu, M.D. Engelhardt, R. Kiran, Eng. Fract. Mech. 199 (2018) 410–437.

    Article  Google Scholar 

  16. M. Springmann, M. Kuna, Comput. Mater. Sci. 33 (2005) 501–509.

    Article  Google Scholar 

  17. C.K. Oh, Y.J. Kim, J.H. Baek, Y.P. Kim, W. Kim, Int. J. Mech. Sci. 49 (2007) 1399–1412.

    Article  Google Scholar 

  18. D. Steglich, W. Brocks, Comput. Mater. Sci. 9 (1997) 7–17.

    Article  Google Scholar 

  19. S. Katani, F. Madadi, M. Atapour, S.Z. Rad, Mater. Des. 49 (2013) 1016–1021.

    Article  Google Scholar 

  20. W.B. Lievers, A.K. Pilkey, D.J. Lloyd, Acta Mater. 52 (2004) 3001–3007.

    Article  Google Scholar 

  21. T. Pardoen, J.W. Hutchinson, J. Mech. Phys. Solids 48 (2000) 2467–2512.

    Article  Google Scholar 

  22. M. Khelifa, M. Oudjene, A. Khennane, Comput. Struct. 85 (2007) 205–212.

    Article  Google Scholar 

  23. Y.M. Huang, K.H. Chien, J. Mater. Process. Technol. 117 (2001) 43–51.

    Article  Google Scholar 

  24. P. Teixeira, A.D. Santos, F.M.A. Pires, J. Mater. Process. Technol. 177 (2006) 278–281.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 51575475 and 51675465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xg., Wang, C., Deng, Qf. et al. High-temperature fracture behavior of MnS inclusions based on GTN model. J. Iron Steel Res. Int. 26, 941–952 (2019). https://doi.org/10.1007/s42243-018-0202-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0202-4

Keywords

Navigation