Skip to main content
Log in

Distribution of TiN inclusions in Ti-stabilized ultra-pure ferrite stainless steel slab

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to clarify and control the silver defect on surface of cold-rolled sheet of the Ti-stabilized ultra-pure ferrite stainless steel, the distribution of TiN inclusions on the cross section of hot-rolled plate was studied using automated scanning electron microscopy/energy-dispersive X-ray spectroscopy inclusion analysis (ASPEX 1020 system). It was found that the number density decreases sharply from the surface to the center of the hot-rolled plate, whereas the average size increases. Then, the distribution of TiN inclusions on the cross section of continuously cast slab was investigated. Similarly, numerous small-sized TiN inclusions were generated at the subsurface of the slab. The average size rapidly increased and the number density dramatically decreased from the subsurface to 1/4 thickness, while from 1/4 thickness to 1/2 thickness, the increase in average size and the decrease in number density were slight. Thermodynamics results showed that TiN inclusion was formed below the liquidus temperature, which indicated that TiN inclusions could not be formed during secondary refining. Considering the microsegregation of solute elements and the equilibrium of TiN formation during solidification, TiN precipitated in the mushy zone when the solid fraction was close to 0.2. The growth of TiN was analyzed based on the diffusion-controlled growth model. With the increase in cooling rate, the time for TiN growth decreased and the size of TiN inclusions was diminished, which revealed the size distribution of TiN inclusions in the cast slab qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.F. Almagro, X. Llovet, M.A. Heredia, C. Luna, R. Sánchez, Microchim. Acta 161 (2008) 323–327.

    Article  Google Scholar 

  2. L.Y. Sun, J.S. Li, L.F. Zhang, S.F. Yang, Y.F. Chen, J. Iron Steel Res. Int. 18 (2011) No. 11, 7–11.

  3. C.W. Sinclair, J.D. Mithieux, J.H. Schmitt, Y. Bréchet, Metall. Mater. Trans. A 36 (2005) 3205–3215.

    Article  Google Scholar 

  4. V. Talyan, R.H. Wagoner, J.K. Lee, Metall. Mater. Trans. A 29 (1998) 2161–2172.

    Article  Google Scholar 

  5. S.I. Kim, Y.C. Yoo, Met. Mater. Int. 8 (2002) 7–13.

    Article  Google Scholar 

  6. Y. Furuya, H. Hirukawa, S. Matsuoka, S. Torizuka, H. Kuwahara, Metall. Mater. Trans. A 39 (2008) 2068–2076.

    Article  Google Scholar 

  7. W. Yan, Y.Y. Shan, K. Yang, Metall. Mater. Trans. A 37 (2006) 2147–2158.

    Article  Google Scholar 

  8. L.F. Zhang, B.G. Thomas, ISIJ Int. 43 (2003) 271–291.

    Article  Google Scholar 

  9. L.F. Zhang, J. Iron Steel Res. Int. 13 (2006) No. 4, 1–8.

  10. W. Yang, Y. Zhang, L.F. Zhang, H.J. Duan, L. Wang, J. Iron Steel Res. Int. 22 (2015) 1069–1077.

    Article  Google Scholar 

  11. H. Wada, R.D. Pehlke, Metall. Mater. Trans. B 8 (1977) 443–450.

    Article  Google Scholar 

  12. H.Y. Choi, W.E. Slye, R.J. Fruehan, R.C. Nunnington, Metall. Mater. Trans. B 36 (2005) 537–541.

    Article  Google Scholar 

  13. B. Ozturk, R. Matway, R.J. Fruehan, Metall. Mater. Trans. B 26 (1995) 563–567.

    Article  Google Scholar 

  14. W.Y. Kim, C.O. Lee, C.W. Yun, J.J. Pak, ISIJ Int. 49 (2009) 1668–1672.

    Article  Google Scholar 

  15. J.O. Jo, W.Y. Kim, C.O. Lee, J.J. Pak, ISIJ Int. 51 (2011) 208–213.

    Article  Google Scholar 

  16. J.J. Pak, Y.S. Jeong, I.K. Hong, W.Y. Cha, D.S. Kim, Y.Y. Lim, ISIJ Int. 45 (2005) 1106–1111.

    Article  Google Scholar 

  17. W.Y. Kim, J.O. Jo, T.I. Chung, D.S. Kim, J.J. Pak, ISIJ Int. 47 (2007) 1082–1089.

    Article  Google Scholar 

  18. J.J. Pak, J.T. Yoo, Y.S. Jeong, S.J. Tae, S.M. Seo, D.S. Kim, Y.D. Lee, ISIJ Int. 45 (2005) 23–29.

    Article  Google Scholar 

  19. W.Y. Kim, J.O. Jo, C.O. Lee, D.S. Kim, J.J. Pak, ISIJ Int. 48 (2008) 17–22.

    Article  Google Scholar 

  20. M. Suzuki, R. Yamaguchi, K. Murakami, M. Nakada, ISIJ Int. 41 (2001) 247–256.

    Article  Google Scholar 

  21. Z.Z. Liu, J. Wei, K.K. Cai, ISIJ Int. 42 (2002) 958–963.

    Article  Google Scholar 

  22. Z.Z. Liu, K.J. Gu, K.K. Cai, ISIJ Int. 42 (2002) 950–957.

    Article  Google Scholar 

  23. H. Goto, K. Miyazawa, W. Yamada, K. Tanaka, ISIJ Int. 35 (1995) 708–714.

    Article  Google Scholar 

  24. H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, K. Tanaka, ISIJ Int. 34 (1994) 414–419.

    Article  Google Scholar 

  25. M. Wintz, M. Bobadilla, J. Lehmann, H. Gaye, ISIJ Int. 35 (1995) 715–722.

    Article  Google Scholar 

  26. J. Lehmann, P. Rocabois, H. Gaye, J. Non-Cryst. Solid. 282 (2001) 61–71.

    Article  Google Scholar 

  27. Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S.N. Lekakh, K. Peaslee, Metall. Mater. Trans. B 45 (2014) 1291–1303.

    Article  Google Scholar 

  28. W. Yang, L.F. Zhang, X.H. Wang, Y. Ren, X.F. Liu, Q.L. Shan, ISIJ Int. 53 (2013) 1401–1410.

    Article  Google Scholar 

  29. Y. Liu, L.F. Zhang, H.J Duan, Y. Zhang, Y. Luo, A.N. Conejo, Metall. Mater. Trans. A 47 (2016) 3015–3025.

    Article  Google Scholar 

  30. J. Chen, Manual of chart and data in common use of steel making, The Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  31. M. Hino, K. Ito, Thermodynamic data for steelmaking, Tohoku University Press, Sendai, Japan, 2010.

    Google Scholar 

  32. G.M. Gulliver, Metallic alloys, Griffen, London, 1922.

    Google Scholar 

  33. E. Scheil, Z. Metallkd. 34 (1942) 70–72.

  34. T.F. Bower, H.D. Brody, M.C. Flemings, Trans. Metall. Soc. AIME 236 (1966) 624–633.

    Google Scholar 

  35. H. Mizukami, T. Suzuki, T. Umeda, Tetsu-to-Hagane 78 (1992) 767–773.

    Article  Google Scholar 

  36. T.W. Clyne, W. Kurz, Metall. Mater. Trans. A 12 (1981) 965–971.

    Article  Google Scholar 

  37. S.K. Choudhary, A. Ghosh, ISIJ Int. 49 (2009) 1819–1827.

    Article  Google Scholar 

  38. H.Y. Liu, H.L. Wang, L. Li, J.Q. Zheng, Y.H. Li, X.Y. Zeng, Ironmak. Steelmak. 38 (2011) 53–58.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2, FRF-TP-15-067A1 and FRF-TP-17-039A1), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Li-feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Hj., Zhang, Y., Ren, Y. et al. Distribution of TiN inclusions in Ti-stabilized ultra-pure ferrite stainless steel slab. J. Iron Steel Res. Int. 26, 962–972 (2019). https://doi.org/10.1007/s42243-018-0196-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0196-y

Keywords

Navigation