Skip to main content
Log in

Evolution of carbides on surface of carburized M50NiL bearing steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The dissolution and precipitation behaviors of the carbides in carburized M50NiL steel were derived from different solution and tempering treatments. Totally four kinds of carbides of (V, Cr)-rich MC, (Mo, Fe)-rich M2C, Fe-rich M3C and (Fe, Cr)-rich M7C3 were obtained from the carburized M50NiL steel after different heat treatments. The key carbides of carburized M50NiL steel were proved to be tough V-rich MC and Cr-rich M7C3. The highest hardness (634 HV) and the optimal surface structure with 1.0% volume fraction of uniformly distributed MC carbides were obtained after the carburized M50NiL steel was solution-treated at 1150 °C and tempered at 500 °C. The quantitative statistics show that 63% of the MC carbides were less than 200 nm under that heat treatment. The variety of carbides changed with solution and tempering conditions. When the solution temperature increased from 1050 to 1150 °C, the undissolved carbides were proved to be Fe-rich M7C3, Mo-rich MC and (Mo, Fe)-rich M2C. Besides, the equivalent content of V-rich MC was found increased when the tempering temperature changed from 500 to 550 °C. The combination of high-temperature solution and low-temperature tempering is recommendable heat treatment for the high hardness as well as the tiny and uniformly distributed carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.N. Bamberger, J.C. Clark Jr, A.H. Nahm, Rolling element bearing member, United States, 4659241, 1987.

  2. S. Ooi, H.K.D.H. Bhadeshia, ISIJ Int. 52 (2012) 1927–1934.

    Article  Google Scholar 

  3. S.G. Song, H. Du, E.Y. Sun, Metall. Mater. Trans. A 33 (2002) 1963–1969.

    Article  Google Scholar 

  4. L. Rosado, N.H. Forster, K.L. Thompson, J.W. Cooke, Tribol. Trans. 53 (2009) 29–41.

    Article  Google Scholar 

  5. F.J. Ebert, Chin. J. Aeronaut. 20 (2007) 378–384.

    Article  Google Scholar 

  6. F. Wang, L. Zheng, H. Zhang, Mater. Sci. Technol. 33 (2017) 438–445.

    Article  Google Scholar 

  7. Z.K. Li, J.Z. Lei, H.F. Xu, F. Yu, H. Dong, W.Q. Cao, J. Iron Steel Res. 28 (2016) No. 3, 1–12.

    Google Scholar 

  8. M. Rhoads, M. Johnson, K. Miedema, J. Scheetz, J. Williams, in: J.M. Beswick (Eds.), Bearing Steel Technologies: 10th Volume Advances in Steel Technologies for Rolling Bearings, ASTM International, Toronto, 2014, pp. 259–271.

    Google Scholar 

  9. Z. Sun, C.S. Zhang, M.F. Yan, Mater. Des. 55 (2014) 128–136.

    Article  Google Scholar 

  10. M.F. Yan, C.S. Zhang, Z. Sun, Appl. Surf. Sci. 289 (2014) 370–377.

    Article  Google Scholar 

  11. X.A. Wang, M.F. Yan, R.L. Liu, Y.X. Zhang, J. Rare Earth 34 (2016) 1148–1155.

    Article  Google Scholar 

  12. L. Insup, Rare Metals 25 (2006) 267–271.

    Article  Google Scholar 

  13. C.S. Zhang, M.F. Yan, Z. Sun, Y.X. Wang, Y. You, B. Bai, L. Chen, Z. Long, R.W. Li, Appl. Surf. Sci. 315 (2014) 28–35.

    Article  Google Scholar 

  14. H.F. Xu, F. Yu, C. Wang, W.L. Zhang, J. Li, W.Q. Cao, J. Iron Steel Res. Int. 24 (2017) 206–213.

    Article  Google Scholar 

  15. A. Bhattacharyya, G. Subhash, N. Arakere, Int. J. Fatigue 59 (2014) 102–113.

    Article  Google Scholar 

  16. Y.H. Wang, Z.N. Yang, F.C. Zhang, D.D. Wu, Mater. Sci. Eng. A 670 (2016) 166–177.

    Article  Google Scholar 

  17. H.S. Hwang, U.C. Chung, W.S. Chung, Y.R. Cho, B.H. Jung, G.P. Martin, Met. Mater. Int. 10 (2004) 77–82.

    Article  Google Scholar 

  18. L.D. Liu, F.S. Chen. Surf. Coat. Technol. 183 (2004) 233–238.

    Article  Google Scholar 

  19. D.W. Hetzner, W.V. Geertruyden, Mater. Charact. 59 (2008) 825–841.

    Article  Google Scholar 

  20. M.A. Klecka, G. Subhash, N.K. Arakere, Tribol. Trans. 56 (2013) 1046–1059.

    Article  Google Scholar 

  21. S.J. Wu, B. Hu, B. Han, Rare Metals 31 (2012) 442–445.

    Article  Google Scholar 

  22. H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57 (2012) 268–435.

    Article  Google Scholar 

  23. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8 (2004) 219–237.

    Article  Google Scholar 

  24. H.K.D.H. Bhadeshia, Mater. Sci. Forum 426–432 (2003) 35–42.

    Article  Google Scholar 

  25. P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, Acta Mater. 55 (2007) 4877–4889.

    Article  Google Scholar 

  26. T. Wen, X.F. Hu, Y.Y. Song, D.S. Yan, L.J. Rong, Mater. Sci. Eng. A 588 (2013) 201–207.

    Article  Google Scholar 

  27. B. Wang, M.S. Yang, K.Y. Zhao, X.H. Yuan, J. Iron Steel Res. 27 (2015) No. 11, 66–72.

    Google Scholar 

  28. F. Ernst, Y. Cao, G.M. Michal, Acta Mater. 52 (2004) 1469–1477.

    Article  Google Scholar 

  29. J. Janovec, M. Svoboda, A. Kroupa, A. Výrostková, J. Mater. Sci. 41 (2006) 3425–3433.

    Article  Google Scholar 

  30. F.M. Liu, J.J. Wang, Y.J. Liu, R.D.K. Misra, C.M. Liu, J. Iron Steel Res. Int. 23 (2016) 559–565.

    Article  Google Scholar 

  31. M. Kang, G. Park, J.G. Jung, B.H. Kim, Y.K. Lee, J. Alloy. Compd. 627 (2015) 359–366.

    Article  Google Scholar 

  32. V. Mohles, D. Rönnpagel, E. Nembach, Comp. Mater. Sci. 16 (1999) 144–150.

    Article  Google Scholar 

  33. V. Mohles, Mater. Sci. Eng. A 309–310 (2001) 265–269.

    Article  Google Scholar 

  34. V. Mohles, B. Fruhstorfer, Acta Mater. 50 (2002) 2503–2516.

    Article  Google Scholar 

  35. I. Hussainova, E. Hamed, I. Jasiuk, Mech. Compos. Mater. 46 (2011) 667–678.

    Article  Google Scholar 

  36. M. Umemoto, K. Tsuchiya, Tetsu-to-Hagané 88 (2002) 117–128.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China under Grant NSFC 51471012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-jing Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, Jl., Zheng, Lj., Wang, Ff. et al. Evolution of carbides on surface of carburized M50NiL bearing steel. J. Iron Steel Res. Int. 25, 1198–1211 (2018). https://doi.org/10.1007/s42243-018-0166-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0166-4

Keywords

Navigation