Technological innovations of electric arc furnace bottom-blowing in China


Nowadays, in China, the bottom-blowing technique plays an important role in accelerating the molten bath stirring and promoting the metallurgical reactions in electric arc furnace (EAF) steelmaking. The innovations of bottom-blowing technologies in EAF steelmaking were reviewed. The optimized bottom-blowing arrangement in EAF based on the furnace structure and the position of electrodes was introduced, and the fluid flow characteristics of EAF molten bath with bottom-blowing were analyzed. Furthermore, bottom-blowing CO2 in EAF can facilitate the carbon–oxygen reaction reaching equilibrium and decrease the content of nitrogen in molten steel due to its special metallurgical properties. Pulsating bottom-blowing in EAF can effectively improve the molten bath stirring through the action of the unsteady bottom-blowing gas streams, which could make the fluid flow field more disorderly than the steady bottom-blowing. And submerged O2 injection with CO2 in EAF can noticeably strengthen the EAF molten bath stirring, increase the production efficiency and improve the molten steel quality.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. [1]

    Y.N. Toulouevski, I.Y. Zinurov, Innovation in electric arc furnaces, Springer, Berlin, 2010.

    Google Scholar 

  2. [2]

    World Steel Association, Steel statistical yearbook 2017. Accessed November 2017.

  3. [3]

    L.Z. Yang, R. Zhu, G.H. Ma, High Temp. Mat. Pr-Isr. 35 (2016) 195–200.

    Google Scholar 

  4. [4]

    L.Z. Yang, T. Jiang, G.H. Li, Y.F. Guo, High Temp. Mat. Pr-Isr. 36 (2017) 615–621.

    Google Scholar 

  5. [5]

    H. Odenthal, A. Kemminger, F. Krause, L. Sankowski, N. Uebber, N. Vogl, Steel Res. Int. 89 (2018) 1700098.

    Article  Google Scholar 

  6. [6]

    G. Wei, R. Zhu, T. Cheng, K. Dong, L. Yang, X. Wu, Metall. Mater. Trans. B 49 (2018) 361–374.

    Article  Google Scholar 

  7. [7]

    G.S. Wei, R. Zhu, T. Cheng, F. Zhao, J. Iron Steel Res. Int. 23 (2016) 997–1006.

    Article  Google Scholar 

  8. [8]

    C.L. He, R. Zhu, K. Dong, Y.Q. Qiu, K.M. Sun, G.L. Jiang, Ironmak. Steelmak. 38 (2011) 291–296.

    Article  Google Scholar 

  9. [9]

    M. Kirschen, R. Ehrengruber, K.M. Zettl, RHI Bulletin 5 (2016) No. 1, 8–13.

  10. [10]

    F. Liu, R. Zhu, K. Dong, X. Bao, S. Fan, ISIJ Int. 55 (2015) 2365–2373.

    Article  Google Scholar 

  11. [11]

    L.F. Li, M.F. Jiang, Z.Y. Duan, Steelmaking 12 (1996) No. 2, 49–52.

  12. [12]

    L.F. Li, M.F. Jiang, Res. Iron Steel 24 (1996) No. 3, 3–6.

  13. [13]

    B. Li, ISIJ Int. 40 (2000) 863–869.

    Article  Google Scholar 

  14. [14]

    G. Wei, R. Zhu, K. Dong, G. Ma, T. Cheng, Metall. Mater. Trans. B 47 (2016) 3066–3079.

    Article  Google Scholar 

  15. [15]

    K. Dong, R. Zhu, W.J. Liu, Adv. Mater. Res. 361–363 (2012) 639–643.

    Google Scholar 

  16. [16]

    H. Wang, R. Zhu, R.Z. Liu, D. Shou, G.J. Xie, S.L. Fan, Y.L. Gu, Industrial Heating 43 (2014) No. 2, 12–17.

    Google Scholar 

  17. [17]

    G. Wei, R. Zhu, K. Dong, Z. Li, L. Yang, X. Wu, Ironmak. Steelmak. 45 (2018) 839–846.

    Article  Google Scholar 

  18. [18]

    G. Wei, R. Zhu, X. Wu, K. Dong, L. Yang, R. Liu, JOM 70 (2018) 969–976.

    Article  Google Scholar 

  19. [19]

    H. Wang, R. Zhu, X. Wang, Z. Li, Miner. Process. Extract. Metall.126 (2017) 47–53.

    Article  Google Scholar 

  20. [20]

    P. He, R.S. Zhang, K.W. Deng, J. Iron Steel Res. 8 (1988) No. S1, 107–113.

    Google Scholar 

  21. [21]

    M.K. Cao, Shanghai Metals 20 (1998) No. 2, 34–37.

    Google Scholar 

  22. [22]

    K. Dong, J.W. Li, C.F. Zhu, Ind. Heat. 40 (2011) No. 1, 60–62.

    Google Scholar 

  23. [23]

    G. Brooks, G. Irons, D. Anghelina, in: 4th High Temperature Processing Symposium, Swinburne University of Technology, Hawthorn, Victoria, Australia, 2012, pp. 13–15.

  24. [24]

    J. Fu, S. Zhou, P. Wang, L. Di, J. Zhu, J. Mater. Sci. Technol. 17 (2001) 233–236.

    Google Scholar 

  25. [25]

    Z.Z. Li, R. Zhu, R.Z. Liu, X.L. Wang, Iron and Steel 51 (2016) No. 9, 40–45.

    Google Scholar 

  26. [26]

    N. Sumida, Y. Oguchi, T. Fujii, T. Fujimura, A. Ueda, Iron and Steel 19 (1984) No. 8, 66–70.

    Google Scholar 

  27. [27]

    C. Yi, R. Zhu, B.Y. Chen, C.R. Wang, J.X. Ke, ISIJ Int. 49 (2009) 1694–1699.

    Article  Google Scholar 

  28. [28]

    G. Wei, R. Zhu, T. Cheng, K. Dong, L. Yang, T. Tang, X. Wu, ISIJ Int. 58 (2018) 842–851.

    Article  Google Scholar 

  29. [29]

    R. Zhu, G.S. Wei, T.P. Tang, Steelmaking 34 (2018) No. 1, 10–19.

    Google Scholar 

  30. [30]

    G. Ma, L. Yang, R. Zhu, Z. Li, X. Wang, G. Wei, T. Cheng, in: Materials Science and Technology Conference and Exhibition 2016, Association for Iron and Steel Technology, AISTECH, 2016, pp. 555–563.

  31. [31]

    L.Z. Yang, R. Zhu, K. Dong, W.J. Liu, G.H. Ma, Adv. Mater. Res. 881–883 (2014) 1540–1544.

    Article  Google Scholar 

  32. [32]

    G. Ma, R. Zhu, K. Dong, Z. Li, R. Liu, G. Wei, Ironmak. Steelmak. 43 (2016) 594–599.

    Article  Google Scholar 

  33. [33]

    G.H. Ma, R. Zhu, R.Z. Liu, F.H. Liu, K. Dong, G.S. Wei, Industrial Heating 44 (2015) No. 2, 1–4.

    Google Scholar 

Download references


The authors would like to express their thanks for the support by the National Natural Science Foundation of China (No. 51734003).

Author information



Corresponding author

Correspondence to Rong Zhu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, G., Zhu, R., Wang, Y. et al. Technological innovations of electric arc furnace bottom-blowing in China. J. Iron Steel Res. Int. 26, 909–916 (2019).

Download citation


  • Electric arc furnace
  • Bottom-blowing CO2
  • Pulsating bottom-blowing
  • EAF combined blowing technology
  • Submerged O2 injection with CO2