Skip to main content
Log in

Effect of coarse TiN inclusions and microstructure on impact toughness fluctuation in Ti micro-alloyed steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Toughness is an important property for steels used in engineering applications. However, recent toughness testing has shown the existence of a significant fluctuation in toughness in a single rolled plate of titanium micro-alloyed steel. The underlying causes of this fluctuation were investigated by fractography, analysis of microstructure and measurement of inclusions. Coarse and distributed TiN inclusions were responsible for the toughness variation, as they tended to act as the potential cleavage initiators to form micro-cracks. From a calculation of the local fracture stress, the critical size of coarse TiN inclusions for dominating micro-crack propagation was 4.93 μm, and similarly that of ferrite grains was 36.6 μm. Under current casting and thermo-mechanically controlled processing schedules, the toughness fluctuation of rolled steel plates can be primarily attributed to the fraction of coarse TiN inclusions larger than 5 μm. A corresponding relationship between impact energy and the proportion of coarse TiN inclusions was established. Finally, a normalizing treatment was applied to refine the ferrite grains of rolled steel plates. Despite the presence of coarse TiN inclusions, this refinement in ferrite grains minimized the toughness fluctuation and improved the uniformity of the impact properties of the steel plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Chen, F. Li, Z.Y. Liu, S. Tang, G.D. Wang, ISIJ Int. 53 (2013) 1070–1075.

    Article  Google Scholar 

  2. B. Ralph, Mater. Charact. 59 (2008) 348–348.

    Google Scholar 

  3. L. Yang, B.A. Webler, G.G. Cheng, J. Iron Steel Res. Int. 24 (2017) 685–690.

    Article  Google Scholar 

  4. W. Yan, Y.Y. Shan, K. Yang, Metall. Mater. Trans. A 38 (2007) 1211–1222.

    Article  Google Scholar 

  5. M. Gómez, L. Rancel, P.P. Gómez, J.I. Robla, S.F. Medina, ISIJ Int. 50 (2010) 868–874.

    Article  Google Scholar 

  6. Y.H. Sun, Y.N. Zeng, K.K. Cai, J. Iron Steel Res. Int. 21 (2014) 451–458.

    Article  Google Scholar 

  7. A. Ghosh, S. Sahoo, M. Ghosh, R.N. Ghosh, D. Chakrabarti, Mater. Sci. Eng. A 613 (2014) 37–47.

    Article  Google Scholar 

  8. X.L. Li, F. Li, Y. Cui, B.L. Xiao, X.M. Wang, Mater. Sci. Eng. A 677 (2016) 340–348.

    Article  Google Scholar 

  9. W. Yan, Y.Y. Shan, K. Yang, Metall. Mater. Trans. A 37 (2006) 2147–2158.

    Article  Google Scholar 

  10. S. Ghosh, S. Mula, Mater. Sci. Eng. A 646 (2015) 218–233.

    Article  Google Scholar 

  11. X.D. Huo, L.J. Li, Z.W. Peng, S.J. Chen, J. Iron Steel Res. Int. 23 (2016) 593–601.

    Article  Google Scholar 

  12. M. Prikryl, A. Kroupa, G.C. Weatherly, S.V. Subramanian, Metall. Mater. Trans. A 27 (1996) 1149–1165.

    Article  Google Scholar 

  13. Y. Zhang, X.B. Li, H. Ma, Metall. Mater. Trans. B 47 (2016) 2148–2156.

    Article  Google Scholar 

  14. M. Strangwood, C.L, Davis, J. Mater. Sci. Technol. 28 (2012) 878–888.

    Article  Google Scholar 

  15. A. Ghosh, A. Ray, D. Chakrabarti, C.L. Davis, Mater. Sci. Eng. A 561 (2013) 126–135.

    Article  Google Scholar 

  16. Y.D. Jiang, Z.L. Xue, J. Zhang, J. Iron Steel Res. Int. 21 (2014) 91–94.

    Article  Google Scholar 

  17. L.P. Zhang, C.L. Davis, M. Strangwood, Metall. Mater. Trans. A 32 (2001) 1147–1155.

    Article  Google Scholar 

  18. M.A. Linaza, J.L. Romero, J.M. Rodríguez-Ibabe, J.J. Urcola, Scripta Metall. Mater. 29 (1993) 451–456.

    Article  Google Scholar 

  19. M.A. Linaza, J.L. Romero, J.M. Rodríguez-Ibabe, J.J. Urcola, Scripta Metall. Mater. 32 (1995) 395–400.

    Article  Google Scholar 

  20. L.P. Zhang, C.L. Davis, M. Strangwood, Metall. Mater. Trans. A 30 (1999) 2089–2096.

    Article  Google Scholar 

  21. A. Echeverrıa, J.M. Rodríguez-Ibabe, Mater. Sci. Eng. A 346 (2003) 149–158.

    Article  Google Scholar 

  22. A. Ghosh, S. Sahoo, M. Ghosh, R.N. Ghosh, D. Chakrabarti, Mater. Sci. Eng. A 613 (2014) 37–47.

    Article  Google Scholar 

  23. A. Ray, D. Chakrabarti, Mater. Sci. Forum 702–703 (2011) 766–769.

    Article  Google Scholar 

  24. J. Wang, C.M. Enloe, J.P. Singh, C.D. Horvath, Sae Int. J. Mater. Manuf. 9 (2016) 488–493.

    Google Scholar 

  25. V. Senkerik, M. Stanek, D. Manas, M. Manas, A. Skrobak, J. Navratil, Appl. Mech. Mater. 752–753 (2015) 300–303.

    Article  Google Scholar 

  26. M. Stec, J. Faleskog, Int. J. Fract. 160 (2009) 151–167.

    Article  Google Scholar 

  27. K. Shibanuma, S. Aihara, Procedia Mater. Sci. 3 (2014) 1238–1243.

    Google Scholar 

  28. J.I.S. Martin, J.M. Rodríguez-Ibabe, Scripta Mater. 40 (1999) 459–464.

    Article  Google Scholar 

  29. D.P. Fairchild, D.G. Howden, W.A.T. Clark, Metall. Mater. Trans. A 31 (2000) 641–652.

    Article  Google Scholar 

  30. J.H. Chen, L. Zhu, H. Ma, Acta Metall. Mater. 38 (1990) 2527–2535.

    Article  Google Scholar 

  31. D. Chakrabarti, M. Strangwood, C. Davis, Metall. Mater. Trans. A 40 (2009) 780–795.

    Article  Google Scholar 

  32. A. Pineau, Int. J. Fract. 150 (2008) 129–156.

    Article  Google Scholar 

  33. T. Lin, A.G. Evans, R.O. Ritchie, Metall. Mater. Trans. A 18 (1987) 641–651.

    Article  Google Scholar 

  34. J.H. Chen, G.Z. Wang, C. Yan, H. Ma, L. Zhu, Int. J. Fract. 83 (1997) 139–157.

    Article  Google Scholar 

  35. W.W. Gerberich, E. Kurman, Scripta Metall. 19 (1985) 295–298.

    Article  Google Scholar 

  36. N.J. Petch, Acta Metall. 34 (1986) 1387–1393.

    Article  Google Scholar 

  37. J.F. Lu, O. Omotoso, J.B. Wiskel, D.G. Ivey, H. Henein, Metall. Mater. Trans. A 43 (2012) 3043–3061.

    Article  Google Scholar 

  38. D. Bhattacharjee, J.F. Knott, C.L. Davis, Metall. Mater. Trans. A 35 (2004) 121–130.

    Article  Google Scholar 

  39. S.J. Wu, C.L. Davis, Mater. Sci. Eng. A 387–389 (2004) 456–460.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51374260, 51504048 and 51611130062). The authors thank the members of Laboratory of Metallurgy and Materials, Chongqing University, for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mu-jun Long or Deng-fu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Long, Mj., Chen, Df. et al. Effect of coarse TiN inclusions and microstructure on impact toughness fluctuation in Ti micro-alloyed steel. J. Iron Steel Res. Int. 25, 1043–1053 (2018). https://doi.org/10.1007/s42243-018-0149-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0149-5

Keywords

Navigation