Skip to main content

Advertisement

Log in

Corrosion and passive behaviour of duplex stainless steel 2205 at different cooling rates in a simulated marine-environment solution

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The corrosion and passive behaviour of duplex stainless steel 2205 at six cooling rates (1, 5, 10, 15, 20 °C s−1 and water quenched) in a simulated marine-environment solution was investigated using electrochemical measurements of potentiostatic critical pitting temperature, potentiodynamic polarisation curves, electrochemical impedance spectroscopy and Mott–Schottky curves. The microstructural evolution and pitting morphologies of the specimens were visualised using an optical microscope and scanning electron microscope. The electrochemical responses of the passive film show that passivity of the steel was enhanced as the cooling rate increased; however, the threshold cooling rate was 20 °C s−1, beyond which pitting corrosion resistance remained stable. Based on the analyses of microstructural evolution and pit morphologies, the proportion of the ferrite phase increased with the cooling rate and the ratio of austenite and ferrite was close to 1:1. The pitting size decreased as the cooling rate increased, and most metastable pits on specimens were located in the ferrite phase and on the ferrite–austenite interface. Thus, pitting resistance of steel is governed by the phase that provides the lowest pitting resistance equivalent number. The optimised pitting corrosion resistance for steel 2205 was achieved when it was greater than or equal to 20 °C s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.F. Li, C.Q. Li, Z.Y. Chen, Cem. Concr. Compos. 31 (2009) 693–698.

    Article  Google Scholar 

  2. B. Pradhan, B. Bhattacharjee, Constr. Build. Mater. 25 (2011) 2565–2575.

    Article  Google Scholar 

  3. Y.P. Song, L.Y. Song, G.F. Zhao, Ocean. Eng. 31 (2004) 779–789.

    Article  Google Scholar 

  4. S. Al-Bahar, E.K. Attiogbe, H. Kamal, ACI Mater. J. 95 (1998) 226–231.

    Google Scholar 

  5. Y.P. Virmani, G.G. Clemena, Corrosion protection-concrete bridges, Turner-Fairbank Highway Research Center, McLean, Virginia, 1998.

    Google Scholar 

  6. M. Pohl, O. Storz, T. Glogowski, Mater. Charact. 58 (2007) 65–71.

    Article  Google Scholar 

  7. M. Conradi, P.M. Schön, A. Kocijan, M. Jenko, G.J. Vancso, Mater. Chem. Phys. 130 (2011) 708–713.

    Article  Google Scholar 

  8. J.D. Kordatos, G. Fourlaris, G. Papadimitriou, Scripta Mater. 44 (2001) 401–408.

    Article  Google Scholar 

  9. T.H. Chen, J.R. Yang, Mater. Sci. Eng. A 311 (2001) 28–41.

    Article  Google Scholar 

  10. E. Hamada, K. Yamada, M. Nagoshi, N. Makiishi, K. Sato, T. Ishii, K. Fukud, S. Ishikaw, T. Ujiro, Corros. Sci. 52 (2010) 3851–3854.

    Article  Google Scholar 

  11. Q. Sun, J. Wang, H.B. Li, Y. Li, Y.D. Hu, J.G. Bai, P.D. Han, J. Iron Steel Res. Int. 23 (2016) 1071–1079.

    Article  Google Scholar 

  12. P.J. Antony, S. Chongdar, P. Kumar, R. Raman, Electrochim. Acta 52 (2007) 3985–3994.

    Article  Google Scholar 

  13. N. Ebrahimi, M. Momeni, M.H. Moayed, A. Davoodi, Corros. Sci. 53 (2011) 637–644.

    Article  Google Scholar 

  14. S.M. Alvarez, A. Bautista, F. Velasco, Corros. Sci. 53 (2011) 1748–1755.

    Article  Google Scholar 

  15. M.H. Moayed, R.C. Newman, Corros. Sci. 48 (2006) 1004–1018.

    Article  Google Scholar 

  16. G.T. Burstein, B.T. Daymond, Corros. Sci. 51 (2009) 2249–2252.

    Article  Google Scholar 

  17. C. Boissy, C. Alemany-Dumont, B. Normand, Electrochem. Commun. 26 (2013) 10–12.

    Article  Google Scholar 

  18. A. Fattah-Alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, N. Attarzadeh, Corros. Sci. 53 (2011) 3186–3192.

    Article  Google Scholar 

  19. A. Kocijan, D.K. Merl, M. Jenko, Corros. Sci. 53 (2011) 776–783.

    Article  Google Scholar 

  20. J. Liu, T. Zhang, G.Z. Meng, Y.W. Shao, F.H. Wang, Corros. Sci. 91 (2015) 232–244.

    Article  Google Scholar 

  21. V. Vignal, O. Delrue, O. Heintz, J. Peultier, Electrochim. Acta 55 (2010) 7118–7125.

    Article  Google Scholar 

  22. M. Casales, V.M. Salinas-Bravo, A. Martinez-Villafañe, J.G. Gonzalez-Rodriguez, Mater. Sci. Eng. A 332 (2002) 223–230.

    Article  Google Scholar 

  23. T.C. Liu, J. Iron Steel Res. 2 (1990) No. 2, 43–48.

    Google Scholar 

  24. L.D. Chen, H. Tan, Z.Y. Wang, J. Li, Y.M. Jiang, Corros. Sci. 58 (2012) 168–174.

    Article  Google Scholar 

  25. L. Weber, P.J. Uggowitzer, Mater. Sci. Eng. A 242 (1998) 222–229.

    Article  Google Scholar 

  26. H. Tan, Z.Y. Wang, Y.M. Jiang, D. Han, J.F. Hong, L.D. Chen, L.Z. Jiang, J. Li, Corros. Sci. 53 (2011) 2191–2200.

    Article  Google Scholar 

  27. Y.Z. Yang, Z.Y. Wang, H. Tan, J.F. Hong, Y.M. Jiang, L.Z. Jiang, J. Li, Corros. Sci. 65 (2012) 472–480.

    Article  Google Scholar 

  28. Z.Y. Zhang, Z.Y. Wang, Y.M. Jiang, H. Tan, D. Han, Y.J. Guo, J. Li, Corros. Sci. 62 (2012) 42–50.

    Article  Google Scholar 

  29. T.H. Chen, J.R. Yang, Mater. Sci. Eng. A 338 (2002) 166–181.

    Article  Google Scholar 

  30. R. Ovarfort, Corros. Sci. 29 (1989) 987–993.

    Article  Google Scholar 

  31. C.O.A. Olsson, D. Landolt, Electrochim. Acta 48 (2003) 1093–1104.

    Article  Google Scholar 

  32. C.N. Cao, Electrochemical of corrosion, Chemical Industry Press, Beijing, 2008.

    Google Scholar 

  33. F. Mohammadi, T. Nickchi, M.M. Attar, A. Alfantazi, Electrochim. Acta 56 (2011) 8727–8733.

    Article  Google Scholar 

  34. U. Rammelt, G. Reinhard, Corros. Sci. 27 (1987) 373–382.

    Article  Google Scholar 

  35. L. Zhang, D.D. Macdonald, E. Sikora, J. Sikora, J. Electrochem. Soc. 145 (1998) 898–905.

    Article  Google Scholar 

  36. D.D. Macdonald, M. Urquidi-Macdonald, J. Electrochem. Soc. 137 (1990) 2395–2402.

    Article  Google Scholar 

  37. H. Tsuchiya, S. Fujimoto, O. Chihara, T. Shibata, Electrochim. Acta 47 (2002) 4357–4366.

    Article  Google Scholar 

  38. S. Ningshen, U.K. Mudali, V.K. Mittal, H.S. Khatak, Corros. Sci. 49 (2007) 481–496.

    Article  Google Scholar 

  39. Y.M. Zeng, J.L. Luo, Electrochim. Acta 48 (2003) 3551–3562.

    Article  Google Scholar 

  40. A.D. Paola, Electrochim. Acta 34 (1989) 203–210.

    Article  Google Scholar 

  41. N.E. Hakiki, M.F. Montemor, M.G.S. Ferreira, M.D.C. Belo, Corros. Sci. 42 (2000) 687–702.

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National High-Tech R&D Programme of China (2015AA03A502). The authors appreciate the help of Professor Kefei Li, Tsinghua University, who offered important viewpoints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-lin Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Sl., Yang, Zm., Zhang, B. et al. Corrosion and passive behaviour of duplex stainless steel 2205 at different cooling rates in a simulated marine-environment solution. J. Iron Steel Res. Int. 25, 943–953 (2018). https://doi.org/10.1007/s42243-018-0136-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0136-x

Keywords

Navigation