Skip to main content
Log in

Effect of strain rate and temperature on the serration behavior of SA508-III RPV steel in the dynamic strain aging process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Dynamic strain aging (DSA) effect on SA508-III reactor pressure vessel (RPV) steel was investigated. The SA508-III RPV steel was subjected to tension tests at different strain rates (1.1 × 10−5 s−1 and 6.6 × 10−5 s−1) and different temperatures (500 and 550 °C) to evaluate the influence of strain rate and temperature on the serrated flow behavior, which is the repetitive and discontinuous yielding phenomenon on the stress–strain curves. The higher temperature leads to the higher density of precipitates, M23C6 carbides and needle-like Mo2C carbides. It was found that the samples under tension test of 6.6 × 10−5 s−1 and 500 °C possess superior mechanical properties and mainly show A-type serrations on the tension test curves. Then, the local regress method was used to filter the DSA curves, thus to show the real trend of the curves. It has been found that the less time of interaction between dislocations and precipitates under higher strain rates leads to a higher strength of the sample. The more tiny-stress drops on the 550 °C serration curve can be attributed to the hardening phase, M23C6 carbides and needle-like Mo2C carbides. The higher percentage of the small stress drops on the serration curves represents the higher mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Bowen, S.G. Druce, J.F. Knott, Acta Metall. 34 (1986) 1121–1131.

    Article  Google Scholar 

  2. S.J. Wu, J.F. Knott, Proceedings of the Fifth International Conference on Engineering Structural Integrity Assessment, Cambridge, 2000, pp. 247–255

  3. S.J. Wu, J.F. Knott, Int. J. Pres. Ves. Pip. 80 (2003) 807–815.

    Article  Google Scholar 

  4. L.W. Cao, S.J. Wu, B. Liu, Mater. Des. 47 (2013) 551–556.

    Article  Google Scholar 

  5. X. Bai, S.J. Wu, P.K. Liaw, Mater. Des. 89 (2016) 759–769.

    Article  Google Scholar 

  6. A.H. Cottrell, B.A. Billy, Proc. Phys. Soc. Lond. A 62 (1949) 49–62.

    Article  Google Scholar 

  7. M.S. Pham, S.R. Holdsworth, Mater. Sci. Eng. A 556 (2012) 122–133.

    Article  Google Scholar 

  8. K.P. Peng, K.W. Qian, W.Z. Chen, Mater. Sci. Eng. A 379 (2004) 372–377.

    Article  Google Scholar 

  9. L.J. Meng, J. Sun, H. Xing, G.W. Pang, J. Nucl. Mater. 394 (2009) 34–38.

    Article  Google Scholar 

  10. J.W. Qiao, Y. Zhang, P.K. Liaw, Intermetallics 18 (2010) 2057–2064.

    Article  Google Scholar 

  11. M. Choi, J.X. Hou, K. Mathis, Y. Kim, D.W. Kim, S. Kim, H. Kwon, H. Choe, Mater. Sci. Eng. A 595 (2014) 165–172.

    Article  Google Scholar 

  12. X.Q. Chang, L.Y. Zhang, Y.B. Yang, J.L. Ren, J. Iron Steel Res. Int. 23 (2016) 64–68.

    Article  Google Scholar 

  13. A. Dubach, F.H. Dalla Torre, J.F. Loffler, Acta Mater. 57 (2009) 881–892.

    Article  Google Scholar 

  14. P.G. McCormick, Acta Metall. 20 (1972) 351–354.

    Article  Google Scholar 

  15. C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 1263–1271.

    Article  Google Scholar 

  16. B.A. Sun, C.T. Liu, Y. Yang, J. Iron Steel Res. Int. 23 (2016) 24–30.

    Article  Google Scholar 

  17. C. Gupta, B. Kumawat, J.K. Chakravartty, Mater. Sci. Eng. A 620 (2015) 407–410.

    Article  Google Scholar 

  18. B. Yuan, J.J. Li, J.W. Qiao, J. Iron Steel Res. Int. 24 (2017) 455–461.

    Article  Google Scholar 

  19. D.J. Dyson, S.R. Keown, D. Raynor, J.A. Whiteman, Acta Metall. 14 (1966) 867–875.

    Article  Google Scholar 

  20. S. Xu, X.Q. Wu, E.H. Han, W. Ke, J. Mater. Sci. 44 (2009) 2882–2889.

    Article  Google Scholar 

  21. S. Luo, S.J. Wu, Mater. Sci. Eng. A 596 (2014) 25–31.

    Article  Google Scholar 

  22. A.K. Roy, J. Pal, C. Mukhopadhyay, Mater. Sci. Eng. A 474 (2008) 363–370.

    Article  Google Scholar 

  23. S. Kok, M.S. Bharathi, A.J. Beaudoin, C. Fressengeas, G. Ananthakrishna, L.P. Kubin, M. Lebyodkin, Acta Mater. 51 (2003) 3651–3662.

    Article  Google Scholar 

  24. L.P. Kubin, Y. Estrin, Acta Metall. 38 (1990) 697–708.

    Article  Google Scholar 

  25. W.H. Jiang, G.J. Fan, F.X. Liu, G.Y. Wang, H. Choo, P.K. Liaw, J. Mater. Res. 21 (2006) 2164–2167.

    Article  Google Scholar 

  26. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Phys. Rev. Lett. 102 (2009) 175501.

    Article  Google Scholar 

  27. J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, K.A. Dahmen, Sci. Rep. 4 (2014) 4382.

    Article  Google Scholar 

  28. J.J. Li, J.W. Qiao, K.A. Dahmen, W.M. Yang, B.L. Shen, M.W. Chen, J. Iron Steel Res. Int. 24 (2017) 366–371.

    Article  Google Scholar 

  29. C. Gupta, J. Chakravartty, S. Wadekar, J. Dubey, Mater. Sci. Eng. A 292 (2000) 49–55.

    Article  Google Scholar 

  30. C. Keller, M.M. Margulies, I. Guillot, Mater. Sci. Eng. A 536 (2012) 273–275.

    Article  Google Scholar 

  31. V. Shankar, M. Valsan, K. Bhanu Sankara Rao, S.L. Mannan, Metall. Mater. Trans. A 35 (2004) 3129–3139.

    Article  Google Scholar 

  32. M. Hornqvist, B. Karlsson, Procedia Engineering 2 (2010) 265–273.

    Article  Google Scholar 

  33. A. Portevin, F. Le Chatelier, C.R. Acad. Sci. Paris 176 (1923) 507.

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Science and Technology Key Specific Project: Life Management Technology of Nuclear Power Plant of China (Grant No. 2011ZX06004-002). The authors would like to express thanks for the help with the manufacturing of the SA508-III reactor pressure vessel steel by Shougang Technology Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-jun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Wu, Sj., Wei, Lj. et al. Effect of strain rate and temperature on the serration behavior of SA508-III RPV steel in the dynamic strain aging process. J. Iron Steel Res. Int. 25, 767–775 (2018). https://doi.org/10.1007/s42243-018-0109-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0109-0

Keywords

Navigation