Skip to main content

Advertisement

Log in

Effect of milling duration on hydrogen storage thermodynamics and kinetics of ball-milled Ce–Mg–Ni-based alloy powders

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To improve the hydrogen storage performance of CeMg12-type alloys, partially substituting Mg with Ni in the alloy was conducted. The way to synthesize the target alloy powders was the mechanical milling method, by which the CeMg11Ni + x wt% Ni (x = 100, 200) alloy powders with nanocrystalline and amorphous structure were obtained. The influence of the milling time and Ni content on the hydrogen storage properties of the alloys was discussed. The X-ray diffractometer and high-resolution transmission electron microscope were used to investigate the microstructures of the ball-milled alloys. The hydrogenation/dehydrogenation dynamics were studied using a Sievert instrument and a differential scanning calorimeter which was linked with a H2 detector. The hydrogen desorption activation energies of the alloy hydrides were evaluated by Arrhenius and Kissinger equations. From the results point of views, there is a little decline in the thermodynamic parameters (enthalpy and entropy changes) with the increase in Ni content. However, the alloys desorption and absorption dynamics are improved distinctly. What is more, the variation of milling time results in a dramatic influence on the hydrogen storage performances of alloys. Various maximum values of the hydrogen capacities correspond to different milling time, which are 5.805 and 6.016 wt% for the CeMg11Ni + x wt% Ni (x = 100, 200) alloys, respectively. The kinetics tests suggest that the hydrogen absorption rates increase firstly and then decrease with prolonging the milling time. The improvement of the gaseous hydrogen storage kinetics results from the decrease in the activation energy caused by the increase in Ni content and milling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.L. Gao, Y. Qi, Y.Q. Li, H.W. Shang, D.L. Zhao, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 198–205.

  2. D. Mori, K. Hirose, Int. J. Hydrogen Energy 34 (2009) 4569–4574.

  3. R. Lan, J.T.S. Irvine, S. Tao, Int. J. Hydrogen Energy 37 (2012) 1482–1494.

  4. P. Dibandjo, C. Zlotea, R. Gadiou, C.M. Ghimbeu, F. Cuevas, M. Latroche, E. Leroy, C. Vix-Guterl, Int. J. Hydrogen Energy 38 (2013) 952–965.

  5. Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770.

  6. L. Schlapbach, A. Züttel, Nature 414 (2001) 353–358.

  7. Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.

  8. J. Milliken, Hydrogen, fuel cells and infrastructure technologies program: multiyear research, development and demonstration plan, Published: 2007-10-01 (Accessed: 2017-03-19), http://www.eere.energy.gov/hydrogenandfuelcells/mypp.

  9. L.E. Klebanoff, J.O. Keller, Int. J. Hydrogen Energy 38 (2013) 4533–4576.

  10. S.S. Makridis, E.I. Gkanas, G. Panagakos, E.S. Kikkinides, A.K. Stubos, P. Wagener, S. Barcikowski, Int. J. Hydrogen Energy 38 (2013) 11530–11535.

  11. Y.H. Zhang, Z.M. Yuan, W.G. Bu, F. Hu, Y. Cai, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 577–586.

  12. Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.

  13. Y. Wang, S.Z. Qiao, X. Wang, Int. J. Hydrogen Energy 33 (2008) 5066–5072.

  14. D.C. Feng, H. Sun, Z.H. Hou, D.L. Zhao, X.T. Wang, Y.H. Zhang, J. Iron Steel Res. Int. 24 (2017) 50–58.

  15. Y.F. Liu, H.G. Pan, M.X. Gao, Q.D. Wang, J. Mater. Chem. 21 (2011) 4743–4755.

  16. E.A. Lass, Int. J. Hydrogen Energy 36 (2011) 10787–10796.

  17. M.Y. Song, S.N. Kwon, H.R. Park, S.H. Hong, Int. J. Hydrogen Energy 36 (2011) 13587–13594.

  18. S. Kalinichenka, L. Röntzsch, T. Riedl, T. Weißgärber, B. Kieback, Int. J. Hydrogen Energy 36 (2011) 10808–10815.

  19. A. Teresiak, A. Gebert, M. Savyak, M. Uhlemann, C. Mickel, N. Mattern, J. Alloy. Compd. 398 (2005) 156–164.

  20. S. Kalinichenka, L. Röntzsch, T. Riedl, T. Gemming, T. Weißgärber, B. Kieback, Int. J. Hydrogen Energy 36 (2011) 1592–1600.

  21. M.Y. Song, Y.J. Kwak, H.S. Shin, S.H. Lee, B.G. Kim, Int. J. Hydrogen Energy 38 (2013) 1910–1917.

  22. T. Spassov, L. Lyubenova, U. Köster, M.D. Baró, Mater. Sci. Eng. A 375-377 (2004) 794–799.

  23. L.H. Kumar, B. Viswanathan, S.S. Murthy, J. Alloy. Compd. 461 (2008) 72–76.

  24. A.A. Poletaev, R.V. Denys, J.P. Maehlen, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Int. J. Hydrogen Energy 37 (2012) 3548–3557.

  25. Q.A. Zhang, C.J. Jiang, D.D. Liu, Int. J. Hydrogen Energy 37 (2012) 10709–10714.

  26. Y. Wang, X. Wang, C.M. Li. Int. J. Hydrogen Energy 35 (2010) 3550–3554.

  27. M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percheron-Guégan, H. Zarrouk, J. Alloy. Compd. 356-357 (2003) 557–561.

  28. H. Niu, D.O. Northwood, Int. J. Hydrogen Energy 27 (2002) 69–77.

  29. H. Falahati, D.P.J. Barz, Int. J. Hydrogen Energy 38 (2013) 8838–8851.

  30. Y.H. Zhang, Z.M. Yuan, T. Yang, W.G. Bu, Z.H. Hou, D.L. Zhao, J. Cent. South Univ. 24 (2017) 773–781.

  31. Z.M. Yuan, Y.H. Zhang, T. Yang, W.G. Bu, S.H. Guo, D.L. Zhao, Renew. Energy 116 (2018) 878–891.

  32. Z.M. Yuan, W. Zhang, P.L. Zhang, Y.H. Zhang, W.G. Bu, S.H. Guo, D.L. Zhao, RSC Adv. 7 (2017) 56365–56374.

  33. M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.

  34. T. Sadhasivam, M.S.L. Hudson, S.K. Pandey, A. Bhatnagar, M.K. Singh, K. Gurunathan, O.N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362.

  35. K.J. Laidler, Pure Appl. Chem. 68(1996) 149–192.

  36. J.F. Fernández, C.R. Sánchez, J. Alloy. Compd. 356-357 (2003) 348–352.

  37. H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.

Download references

Acknowledgements

The authors want to express the support of the National Natural Science Foundation of China (51761032 and 51471054), and School of Materials and Metallurgy, Inner Mongolia University of Science and Technology for the projection of young teachers’ personnel training (214CY012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dian-chen Feng, Xi-tao Wang or Yang-huan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Dc., Sun, H., Wang, Xt. et al. Effect of milling duration on hydrogen storage thermodynamics and kinetics of ball-milled Ce–Mg–Ni-based alloy powders. J. Iron Steel Res. Int. 25, 746–754 (2018). https://doi.org/10.1007/s42243-018-0102-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0102-7

Keywords

Navigation