Effect of high Na2O addition on distribution of phosphorus in low-basicity converter slag

  • Chang Su
  • Ning-ning Lv
  • Jin-xing Yang
  • Liu-shun Wu
  • Hai-chuan Wang
  • Yuan-chi Dong
Original Paper


In order to improve the dephosphorization efficiency of low-basicity converter slag and decrease the consumption of solid CaO, the effect of high Na2O addition (0–15 mass%) on the distribution of P2O5 between solid solution and matrix phase was investigated. The thermodynamic properties of slag samples were calculated by FactSage 7.0 software. Then, the dissolution behavior of phosphorus element from slag was studied. The results show that the mass fraction of 2CaO·SiO2–2CaO·Na2O·P2O5 solid solution increases when the Na2O content is increased in slag. However, the amount of formed solid solution changes little when the Na2O addition is more than 10 mass%. Moreover, the content of Na2O in solid solution would reach saturation when adding 15 mass% Na2O into the slag. With the increase in Na2O content in slag, the distribution ratio of P2O5 between solid solution and matrix phase increases. The values are evidently higher than the results reported in the literature. Meanwhile, the activity of P2O5 in matrix phase and the activity coefficient of P2O5 in solid solution are decreased with increasing the Na2O content in slag. Furthermore, the dissolution ratio of phosphorus in citric acid solution could be improved by adding Na2O into slag, but the increment of dissolution ratio would decrease when the Na2O content exceeds 10 mass% in slag.


Na2O addition Low-basicity converter slag Phosphorus distribution ratio Thermodynamic property Phosphorus dissolution behavior 



This work was financially supported by National Natural Science Foundation of China (51604003, 51704010), Natural Science Research Project of Anhui Province Universities (KJ2016A089) and Key Laboratory Open Project Fund of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology), Ministry of Education (JKF18-02).


  1. [1]
    X. Yang, H. Matsuura, F. Tsukihashi, ISIJ Int. 49 (2009) 1298–1307.CrossRefGoogle Scholar
  2. [2]
    N. Maruoka, A. Ishikawa, H. Shibata, S.Y. Kitamura, High Temp. Mater. Proc. 32 (2013) 15–24.CrossRefGoogle Scholar
  3. [3]
    W. Wu, S.F. Dai, Y. Liu, J. Iron Steel Res. Int. 24 (2017) 908–915.CrossRefGoogle Scholar
  4. [4]
    M. Zhong, H. Matsuura, F. Tsukihashi, ISIJ Int. 55 (2015) 2283–2288.CrossRefGoogle Scholar
  5. [5]
    X. Yang, H. Matsuura, F. Tsukihashi, ISIJ Int. 50 (2010) 702–711.CrossRefGoogle Scholar
  6. [6]
    S.Y. Kitamura, K.I. Miyamoto, H. Shibata, N. Maruoka, M. Matsuo, ISIJ Int. 49 (2009) 1333–1339.CrossRefGoogle Scholar
  7. [7]
    X.L. Pan, J.Y. Li, M. Guo, M. Zhang, J. Iron Steel Res. 29 (2017) 474–480.Google Scholar
  8. [8]
    F. Yang, X.G. Bi, J.D. Zhou, J. Iron Steel Res. 28 (2016) No. 3, 29–34.Google Scholar
  9. [9]
    W. Fix, H. Heymann, R. Heinke, J. Am. Ceram. Soc. 52 (1969) 346–347.CrossRefGoogle Scholar
  10. [10]
    R. Inoue, H. Suito, ISIJ Int. 46 (2006) 174–179.CrossRefGoogle Scholar
  11. [11]
    N. Wang, Z.G. Liang, M. Chen, Z.S. Zou, J. Iron Steel Res. Int. 18 (2011) No. 11, 17–19.CrossRefGoogle Scholar
  12. [12]
    N. Wang, Z.G. Liang, M. Chen, Z.S. Zou, J. Iron Steel Res. Int. 18 (2011) No. 12, 22–26.CrossRefGoogle Scholar
  13. [13]
    L. Jiang, J. Diao, X.M. Yan, B. Xie, Y. Ren, T. Zhang, G.Z. Fan, ISIJ Int. 55 (2015) 564–569.CrossRefGoogle Scholar
  14. [14]
    L. Lin, Y.P. Bao, M. Wang, W. Jiang, H.M. Zhou, J. Iron Steel Res. Int. 21 (2014) 496–502.CrossRefGoogle Scholar
  15. [15]
    J. Diao, B. Xie, Y.H. Wang, X. Guo, ISIJ Int. 52 (2012) 955–959.CrossRefGoogle Scholar
  16. [16]
    C.M. Du, X. Gao, S. Ueda, S.Y. Kitamura, ISIJ Int. 57 (2017) 487–496.CrossRefGoogle Scholar
  17. [17]
    M. Numata, N. Maruoka, S.J. Kim, S.Y. Kitamura, ISIJ Int. 54 (2014) 1983–1990.CrossRefGoogle Scholar
  18. [18]
    F. Pahlevani, S.Y. Kitamura, H. Shibata, N. Maruoka, ISIJ Int. 50 (2010) 822–829.CrossRefGoogle Scholar
  19. [19]
    K.I. Shimauchi, S.Y. Kitamura, H. Shibata, ISIJ Int. 49 (2009) 505–511.CrossRefGoogle Scholar
  20. [20]
    H.M. Zhou, Y.P. Bao, L. Lin, Steel Res. Int. 84 (2013) 863–869.CrossRefGoogle Scholar
  21. [21]
    S.L. Xie, W.L. Wang, Y.Z. Liu, H. Matsuura, ISIJ Int. 54 (2014) 766–773.CrossRefGoogle Scholar
  22. [22]
    C.M. Du, X. Gao, S.J. Kim, S. Ueda, S.Y. Kitamura, ISIJ Int. 56 (2016) 1436–1444.CrossRefGoogle Scholar
  23. [23]
    K. Kunisada, H. Iwai, Trans. ISIJ 27 (1987) 263–269.CrossRefGoogle Scholar
  24. [24]
    H. Suito, R. Inoue, Trans. ISIJ 24 (1984) 47–53.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Chang Su
    • 1
    • 2
  • Ning-ning Lv
    • 1
    • 2
  • Jin-xing Yang
    • 1
    • 2
  • Liu-shun Wu
    • 1
    • 2
  • Hai-chuan Wang
    • 1
    • 2
  • Yuan-chi Dong
    • 1
    • 2
  1. 1.School of Metallurgical EngineeringAnhui University of TechnologyMa’anshanChina
  2. 2.Key Laboratory of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology)Ministry of EducationMa’anshanChina

Personalised recommendations