Skip to main content

Advertisement

Log in

Effects of pressure on structure and dynamics of metallic glass-forming liquid with miscibility gap

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The metallic liquid with miscibility gap has been widely explored recently because of the increasing plastic deformation ability of phase-separated metallic glass. However, the poor glass-forming ability limits its application as the structural materials due to the positive mixing enthalpy of the two elements. Since high pressure is in favor of the formation of the glass, the effect of pressure on the structural and dynamical heterogeneity of phase-separated Cu50Ag50 liquid is investigated by molecular dynamics simulation in the pressure range of 0–16 GPa. The results clearly show that the pressure promotes the formation of metallic glass by increasing the number of fivefold symmetry cluster W and dynamical relaxation time; meanwhile, the liquid–liquid phase separation is also enhanced, and the homogenous atom pairs show stronger interaction than heterogeneous atom pairs with increasing pressure. The dynamical heterogeneity is related to the formation of fivefold symmetry clusters. The lower growing rate of W at higher pressure with decreasing temperature corresponds to the slow increase in dynamical heterogeneity. The pressured glass with miscibility gap may act as a candidate glass with improved plastic formation ability. The results explore the structural and dynamical heterogeneity of phase-separated liquid at atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Kramer, Annal. Phys. 411 (1934) 792.

    Article  Google Scholar 

  2. W.L. Johnson, K. Samwer, Phys. Rev. Lett. 95 (2005) 195501.

    Article  Google Scholar 

  3. Y.Q. Cheng, H.W. Sheng, E. Ma, Phys. Rev. B 78 (2008) 1436–1446.

    Google Scholar 

  4. M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramn, D.C. Hofmann, Nat. Mater. 10 (2011) 123–128.

    Article  Google Scholar 

  5. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, Nature 451 (2008) 1085–1089.

    Article  Google Scholar 

  6. J.B. Li, J.S. Jang, S.R Jian, K.W. Chen, J.F. Lin, J.C. Huang, Mater. Sci. Eng. A 528 (2011) 8244–8248.

    Article  Google Scholar 

  7. G. Chen, J.L. Cheng, C.T. Liu, Intermetallics 28 (2012) 25–33.

    Article  Google Scholar 

  8. A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo, K. Hono, Acta Mater. 52 (2004) 2441–2448.

    Article  Google Scholar 

  9. A. Inoue, S. Chen, T. Masumoto, Mater. Sci. Eng. A 179–180 (1994) 346–350.

    Article  Google Scholar 

  10. K. Ziewiec, J. Non-Cryst. Solids 358 (2012) 1790–1794.

    Article  Google Scholar 

  11. N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, Scripta Mater. 53 (2005) 271–274.

    Article  Google Scholar 

  12. S.S. Chen, H.R. Zhang, I. Todd, Scripta Mater. 72–73 (2014) 47–50.

    Article  Google Scholar 

  13. X.H. Du, J.C. Huang, H.M. Chen, H.S. Chen, Y.H. Lai, K.C. Hsieh, Intermetallics 17 (2009) 607–613.

    Article  Google Scholar 

  14. Y.L. Ren, R.L. Zhu, J. Sun, J.H. You, K.Q. Qiu, J. Alloy. Compd. 493 (2010) L42–L46.

    Article  Google Scholar 

  15. L. Wang, K.Q. Qiu, Y.L. Ren, Q.R. Hui, X.L. Cui, J. Alloy. Compd. 612 (2014) 5–9.

    Article  Google Scholar 

  16. X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, Appl. Phys. Lett. 91 (2007) 45.

    Google Scholar 

  17. H.S. Chen, J. Appl. Phys. 49 (1978) 3289–3291.

    Article  Google Scholar 

  18. A. Slipenyuk, J. Eckert, Scripta Mater. 50 (2004) 39–44.

    Article  Google Scholar 

  19. A. Pronin, M.V. Kondrin, A.G. Lyapin, V.V. Brazhkin, A.A. Volkov, P. Lunkenheimer, Phys. Rev. E 81 (2010) 041503.

    Article  Google Scholar 

  20. M. Paluch, R. Casalini, S. Henselbielowka, C.M. Roland, J. Chem. Phys. 116 (2002) 9839–9844.

    Article  Google Scholar 

  21. M. Wakeda, J. Saida, J. Li, S. Ogata, Sci. Rep. 5 (2015) 10545.

    Article  Google Scholar 

  22. C.M. Roland, S. Henselbielowka, M. Paluch, R. Casalini, Rep. Prog. Phys. 68 (2005) 1405–1478.

    Article  Google Scholar 

  23. H.B. Lou, L.H. Xiong, A.S. Ahmad, A.G. Li, K. Yang, K. Glazyrin, Acta Mater. 81 (2014) 420–427.

    Article  Google Scholar 

  24. P.G. Debenedetti, F.H. Stillinger, Nature 410 (2001) 259–267.

    Article  Google Scholar 

  25. S. Pawlus, M. Paluch, J. Ziolo, C.M. Roland, J. Phys. 21 (2009) 332101.

    Google Scholar 

  26. J. Ding, Y.Q. Cheng, E. Ma, Acta Mater. 69 (2014) 343–354.

    Article  Google Scholar 

  27. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31 (1959) 1164–1169.

    Article  Google Scholar 

  28. N. Miyazaki, M. Wakeda, Y.J. Wang, S. Ogata, Npj Comput. Mater. 2 (2016) 16013.

    Article  Google Scholar 

  29. J. Ding, M. Asta, R.O. Ritchie, Phys. Rev. B 93 (2016) 140204R.

    Article  Google Scholar 

  30. E. Velasco, S Toxvaerd, Phys. Rev. E 54 (1996) 605–610.

    Article  Google Scholar 

  31. J.F. Xu, B.B. Wei, Acta Phys. Sin. 53 (2004) 1909–1915.

    Google Scholar 

  32. Y.S. Li, Z. Chen, Y.L. Lu, G.D. Xu, Chin. Phys. B 16 (2007) 854–861.

    Article  Google Scholar 

  33. M.L. Li, X.Y. Fu, H.N. Sun, H.A. Zhao, C. Li, Y.P. Duan, Y. Yan, M.H. Sun, Acta Phys. Sin. 58 (2009) 5604–5609.

    Google Scholar 

  34. J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339 (2013) 936–940.

    Article  Google Scholar 

  35. D. Hnisz, K. Shrinivas, R.A. Young, A.K. Chakraborty, P.A. Sharp, Cell 169 (2017) 13–23.

    Article  Google Scholar 

  36. A.J. Bray, Physica A 194 (1995) 41–52.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 51371108, 51501104 and 51501103) and the Natural Science Foundation of Shandong Province (No. ZR2014EMM011) is gratefully acknowledged. A major part of the present computation was carried out using the HPC Cluster Supercomputer center at Shandong University (Weihai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Wang, Pf., Peng, Cx. et al. Effects of pressure on structure and dynamics of metallic glass-forming liquid with miscibility gap. J. Iron Steel Res. Int. 25, 666–673 (2018). https://doi.org/10.1007/s42243-018-0095-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0095-2

Keywords

Navigation