In situ observation and modeling of austenite grain growth in a Nb–Ti-bearing high carbon steel

  • Guang JiEmail author
  • Xiu-hua Gao
  • Zhen-guang Liu
  • Ke Zhang
Original Paper


In situ measurements of austenite grain growth were made at various temperatures in the range of 1273–1473 K with subsequent isothermal holding time of 3600 s for the Nb–Ti-bearing and Nb–Ti-free high carbon steel by using a confocal laser scanning microscope. The solid solute behavior of Nb–Ti carbides during austenitizing process was analyzed. The experimental results indicate that the austenite grains of both steels grow up gradually with increasing the heating temperature and holding time; the size and growth rate of austenite grain of Nb–Ti-bearing high carbon steel are much lower than those of Nb–Ti-free high carbon steel. A large amount of (Nb,Ti)(C,N) nanoparticles are observed in Nb–Ti-bearing steel, which retain the strong pinning effect on austenite grain boundary. The kinetics model of austenite grain growth of Nb–Ti-bearing steel during isothermal heat treatment is obtained and the predicted values calculated by using the model meet the experimental values very well.


Confocal laser scanning microscope Nb–Ti microalloying High carbon steel Grain growth Nanoparticle Grain growth model 



The authors gratefully appreciate the financial support by the National High-tech R&D Program (863 Program) of China (No. 2015AA03A501).


  1. [1]
    W.B. Morrison, J. Mater. Sci. Technol. 25 (2009) 1066–1073.CrossRefGoogle Scholar
  2. [2]
    M. Oliveira, S. Jansto, H. Mohrbacher, J. Patel, M. Stuart, in: Proceedings of International Symposium on Nb–bearing Steel Technology Development in China for the 30th Anniversary Celebration, Beijing, 2009, pp. 119–144.Google Scholar
  3. [3]
    E. Abbasi, W.M. Rainforth, J. Mater. Sci. Technol. 33 (2017) 311–320.CrossRefGoogle Scholar
  4. [4]
    X.P. Ma, C.L. Miao, B. Langelier, S. Subramanian, Mater. Des. 132 (2017) 244–249.CrossRefGoogle Scholar
  5. [5]
    A.G. Kalashar, A. Kermanpur, E. Ghassemali, A. Najafizadeh, Y. Mazaheri, Mater. Sci. Eng. A 678 (2016) 215–226.CrossRefGoogle Scholar
  6. [6]
    S.G. Hashemi, B. Eghbali, Mater. Sci. Eng. A 705 (2017) 32–41.CrossRefGoogle Scholar
  7. [7]
    M. Head, A. Radulescu, T. King, SAE Trans. J. Mater. Manuf. 115 (2007) 705–716.Google Scholar
  8. [8]
    H. Ma, S.L. Liao, S.F. Wang, J. Iron Steel Res. Int. 21 (2014) 702–709.CrossRefGoogle Scholar
  9. [9]
    S.G. Jansto, Metall. Mater. Trans. B 45 (2014) 438–444.CrossRefGoogle Scholar
  10. [10]
    C.L. Zhang, Y.Z. Liu, L.Y. Zhou, J. Chao, J. Iron Steel Res. Int. 19 (2012) 47–51.CrossRefGoogle Scholar
  11. [11]
    L.Z. Han, R.K. Chen, J.F. Gu, J.S. Pan, Acta Metall. Sin. 45 (2009) 1446–1450.Google Scholar
  12. [12]
    S.K. Kurtz, F.M.A. Carpay, J. Appl. Phys. 51 (1980) 5725–5745.CrossRefGoogle Scholar
  13. [13]
    S.S. Zhang, M.Q. Li, Y.G. Liu, J. Luo, T.Q. Liu, Mater. Sci. Eng. A 528 (2011) 4967–4972.CrossRefGoogle Scholar
  14. [14]
    Z.Y. Gao, F.Y. Sun, J. Iron Steel Res. 1 (1989) No. 4, 59–63.Google Scholar
  15. [15]
    A. Kisko, J. Talonen, D.A. Porter, L.P. Karjalainen, ISIJ Int. 55 (2015) 2217–2224.CrossRefGoogle Scholar
  16. [16]
    C. Zener, C.S. Smith, Trans. Metall. Soc. AIME 175 (1948) 15–51.Google Scholar
  17. [17]
    W. Ostwald, Z. Phys. Chem. 34 (1900) 495–503.Google Scholar
  18. [18]
    Z.C. Liu, Transformation principle of material microstructure, Metallurgical Industry Press, Beijing, 2006.Google Scholar
  19. [19]
    L.M. Fu, H.R. Wang, W. Wang, A.D. Shan, Mater. Sci. Technol. 27 (2011) 996–1001.CrossRefGoogle Scholar
  20. [20]
    C.M. Sellars, J.A. Whiteman, Met. Sci. 13 (1979) 187–194.CrossRefGoogle Scholar
  21. [21]
    E. Anelli, ISIJ Int. 32 (1992) 440–449.CrossRefGoogle Scholar
  22. [22]
    D. Samantaray, S. Mandal, A.K. Bhaduri, Mater. Des. 31 (2010) 981–984.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Guang Ji
    • 1
    • 2
    Email author
  • Xiu-hua Gao
    • 1
  • Zhen-guang Liu
    • 3
  • Ke Zhang
    • 4
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.Jiangsu Shagang Group Huaigang Special Steel Co., Ltd.HuaianChina
  3. 3.School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  4. 4.Institute of Research of Iron and Steel, ShasteelZhangjiagangChina

Personalised recommendations