Advertisement

Corrosion behavior of a spark plasma sintered Fe–20Mn–11Al–1.8C–5Cr alloy in molten aluminum

  • Jian Liu
  • Wei-ping Chen
  • Xian-man Zhang
  • Zhi-qiang Fu
Original Paper

Abstract

The corrosion behavior of an Fe–20Mn–11Al–1.8C–5Cr alloy prepared by spark plasma sintering was investigated via immersion tests in molten aluminum at 750 °C for 1 and 4 h, respectively, and a hot work steel (AISI H13) was included as a reference. The experimental results show that the corrosion rate of Fe–20Mn–11Al–1.8C–5Cr alloy is ~ 24% of that of H13 steel, suggesting that Fe–20Mn–11Al–1.8C–5Cr alloy in molten aluminum possesses better corrosion resistance than H13 steel. Detailed analysis show that κ-carbide ((Fe, Mn)3AlC x ) and Cr7C3 carbide precipitated in the matrix play a key role in enhancing the corrosion resistance of Fe–20Mn–11Al–1.8C–5Cr alloy in molten aluminum. Both of them show better corrosion resistance than γ-Fe matrix and H13 steel, and can also take on the role of roots in grasping the corrosion product and restrain them from spalling into the molten aluminum.

Keywords

Fe–Mn–Al–C–Cr alloy Molten aluminum Immersion Corrosion behavior 

Notes

Acknowledgements

This research was funded by National Natural Science Foundation of China (51271080) and Opening Project of Guangdong Key Laboratory for Advanced Metallic Materials Processing (South China University of Technology) (Grant No. GJ201609).

References

  1. [1]
    M. Yan, Z. Fan, J. Mater. Sci. 36 (2001) 285–295.CrossRefGoogle Scholar
  2. [2]
    W. Cheng, C. Wang, Appl. Surf. Sci. 257 (2011) 4663–4668.CrossRefGoogle Scholar
  3. [3]
    K. Bouché, F. Barbier, A. Coulet, Mater. Sci. Eng. A 249 (1998) 167–175.CrossRefGoogle Scholar
  4. [4]
    A. Bouayad, C. Gerometta, A. Belkebir, A. Ambari, Mater. Sci. Eng. A 363 (2003) 53–61.CrossRefGoogle Scholar
  5. [5]
    D. Balloy, J.C. Tissier, M.L. Giorgi, M. Briant, Metall. Mater. Trans. A 41 (2010) 2366–2376.CrossRefGoogle Scholar
  6. [6]
    X.M. Zhang, H.F. Luo, L.Y. Shi, J. Iron Steel Res. Int. 23 (2016) 1127–1133.CrossRefGoogle Scholar
  7. [7]
    D.G. Morris, M.A. Muñoz-Morris, L.M. Requejo, Acta Mater. 54 (2006) 2335–2341.CrossRefGoogle Scholar
  8. [8]
    G.D. Tsay, C.L. Lin, C.G. Chao, T.F. Liu, Mater. Trans. 51 (2010) 2318–2321.CrossRefGoogle Scholar
  9. [9]
    Y.H. Tuan, C.S. Wang, C.Y. Tsai, C.G. Chao, T.F. Liu, Mater. Chem. Phys. 114 (2009) 595–598.CrossRefGoogle Scholar
  10. [10]
    D. Song, W. Sun, J.Y. Jiang, H. Ma, J.C. Zhang, Z.J. Cheng, J. Iron Steel Res. Int. 23 (2016) 608–617.CrossRefGoogle Scholar
  11. [11]
    J.G. Duh, C.J. Wang, J. Mater. Sci. 25 (1990) 268–276.CrossRefGoogle Scholar
  12. [12]
    X.Y. Chong, Y.H. Jiang, R. Zhou, J. Am. Ceram. Soc. 100 (2017)1588–1597.CrossRefGoogle Scholar
  13. [13]
    J. Liu, W. Chen, Z. Jiang, L. Liu, Z. Fu, Vacuum 137 (2017) 183–190.CrossRefGoogle Scholar
  14. [14]
    K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, B.J. Lee, J. Alloy. Compd. 505 (2010) 217–223.CrossRefGoogle Scholar
  15. [15]
    M.C. Li, H. Chang, P.W. Kao, D. Gan, Mater. Chem. Phys. 59 (1999) 96–99.CrossRefGoogle Scholar
  16. [16]
    C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1–184.CrossRefGoogle Scholar
  17. [17]
    Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41 (2006) 763–777.CrossRefGoogle Scholar
  18. [18]
    V. Mamedov, Powder Metall. 45 (2002) 322–328.CrossRefGoogle Scholar
  19. [19]
    R. Vintila, A. Charest, R.A.L. Drew, M. Brochu, Mater. Sci. Eng. A 528 (2011) 4395–4407.CrossRefGoogle Scholar
  20. [20]
    X.M. Zhang, W.P. Chen, H.F. Luo, S. Li, T. Zhou, L.Y. Shi, Corros. Sci. 125 (2017) 20–28.CrossRefGoogle Scholar
  21. [21]
    D.C. Lou, O.M. Akselsen, M.I. Onsøien, J.K. Solberg, J. Berget, Surf. Coat. Technol. 200 (2006) 5282–5288.CrossRefGoogle Scholar
  22. [22]
    X.M. Zhang, Research on the corrosion-wear resistance of the novel Fe–Cr–B cast steels and their three-dimensional interconnected ZrO2 reinforced metal matrix composites in molten aluminum, South China University of Technology, Guangzhou, 2015.Google Scholar
  23. [23]
    D. Wang, Z. Shi, L. Zou, Appl. Surf. Sci. 214 (2003) 304–311.CrossRefGoogle Scholar
  24. [24]
    H.Q. Xiao, W.P. Chen, Z. Liu, Trans. Nonferrous Met. Soc. China 22 (2012) 2320–2326.CrossRefGoogle Scholar
  25. [25]
    J. Xu, M.A. Bright, X. Liu, E. Barbero, Metall. Mater. Trans. A 38 (2007) 2727–2736.CrossRefGoogle Scholar
  26. [26]
    C.W. Su, J.W. Lee, C.S. Wang, C.G. Chao, T.F. Liu, Surf. Coat. Technol. 202 (2008) 1847–1852.CrossRefGoogle Scholar
  27. [27]
    W. Zhang, J.B. Wen, X.F. Wang, F. Xiong, X.A. Cui, Trans. Nonferrous Met. Soc. China 17 (2007) 1632–1636.Google Scholar
  28. [28]
    M.V. Akdeniz, A.O. Mekhrabov, T. Yilmaz, Scripta Mater. 31 (1994) 1723–1728.CrossRefGoogle Scholar
  29. [29]
    S.G. Denner, R.D. Jones, Mater. Sci. Technol. 4 (1977) 167–174.Google Scholar
  30. [30]
    W.J. Cheng, C.J. Wang, Appl. Surf. Sci. 277 (2013) 139–145.CrossRefGoogle Scholar
  31. [31]
    M.V. Akdeniz, A.O. Mekhrabov, Acta Mater. 46 (1998) 1185–1192.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.Guangdong Key Laboratory for Advanced Metallic Materials ProcessingSouth China University of TechnologyGuangzhouChina
  2. 2.College of Engineering and Technology, Normal College of ZunyiZunyiChina
  3. 3.Mechanical and Electrical Engineering CollegeHainan UniversityHaikouChina

Personalised recommendations