Insights on pretreatment of Indian hematite fines in grate–kiln pelletizing process: the choice of grinding processes

  • De-qing Zhu
  • Zheng-qi Guo
  • Jian Pan
  • Zhao-yuan Wang
Original Paper


Indian hematite fines are normally characterized by high iron grade and minor impurities, which are usually used for sinter fines. With macroscale operations technology of blast furnace in Indian, pellets, as a kind of high-quality materials, attract more and more attention. However, the hematite fines possess the coarse size. Hence, they inevitably need to be further finely ground for pelletizing before balling. The grinding behavior of Indian hematite fines was revealed by conducting the ball milling tests and determining the Bond ball mill work index (Wi). The results show that Indian hematite fines have an excellent grindability with Wi of only 7.40–7.73 kWh/t, indicating that ball milling is an economically viable way to pretreat Indian hematite fines. Nonetheless, due to poor sedimentation and filtering properties of wet ground products, the dry ball milling is more appropriate to process Indian hematite fines. In addition, the superior quality green balls can be manufactured with dry ground products under the conditions of 0.5% bentonite dosage, 7.5% moisture and balling for 12 min, which further confirmed that the recommended pellet feed preparation technique is reasonable.


Indian hematite fine Dry ball milling Wet ball milling Bond work index Sedimentation characteristic Filtration characteristic 



The authors would like to acknowledge the Analytical and Testing Center of Central South University to supply the facilities to fulfill the measurements. The authors also wish to express their thanks to the National Natural Science Foundation of China (No. 51474161) and Hunan Provincial Innovation Foundation for Postgraduate (CX2017B056) for the financial support of this research.


  1. [1]
    D.Q. Zhu, T.J. Chun, J. Pan, J.L. Zhang, Int. J. Miner. Process. 125 (2013) 51–60.CrossRefGoogle Scholar
  2. [2]
    S. Dawrapudi, T.K. Ghosh, A. Shankar, V. Tathavadkar, D. Bhattacharjee, R. Venugopal, Int. J. Miner. Process. 96 (2010) 45–53.CrossRefGoogle Scholar
  3. [3]
    G.P. Singh, Sundeep, R.P. Choudhary, H. Vardhanb, M. Aruna, A.B. Akolkar, Procedia Earth Planet. Sci. 11 (2005) 582–597.CrossRefGoogle Scholar
  4. [4]
    S. Singh, H. Sahoo, S.S. Rath, A.K. Sahu, B. Das, Powder Technol. 269 (2015) 38–45.CrossRefGoogle Scholar
  5. [5]
    T.V.V. Kumar, D.S. Rao, S.S. Rao, S. Prabhakar, G.B. Raju, J. Min. Metall. A 49 (2013) 57–66.CrossRefGoogle Scholar
  6. [6]
    M.P. Srivastava, S.K. Pan, N. Prasad, B.K. Mishra, Int. J. Miner. Process. 61 (2001) 93–107.CrossRefGoogle Scholar
  7. [7]
    L.G. Austin, K. Julianelli, A.S. de Souza, C.L. Schneider, Int. J. Miner. Process. 84 (2007) 157–171.CrossRefGoogle Scholar
  8. [8]
    F.P. van der Meer, Miner. Eng. 73 (2015) 21–30.CrossRefGoogle Scholar
  9. [9]
    D.W. Fuerstenau, A.Z.M. Abouzeid, P.B. Phatak, Int. J. Miner. Process. 97 (2010) 52–58.CrossRefGoogle Scholar
  10. [10]
    X.H. Fan, Specialized English of sintering and pelletizing, Central South University Press, Changsha, 1992.Google Scholar
  11. [11]
    N. Magdalinovic, M. Trumic, G. Trumic, S. Magdalinovic, M. Trumic, Int. J. Miner. Process. 114–117 (2012) 48–50.CrossRefGoogle Scholar
  12. [12]
    M. Gent, M. Menendez, J. Toraño, S. Torno, Powder Technol. 224 (2012) 217–222.CrossRefGoogle Scholar
  13. [13]
    R. Ahmadi, S. Shahsavari, Miner. Eng. 22 (2009) 104–106.CrossRefGoogle Scholar
  14. [14]
    B. Csőke, Á. Rácz, G. Mucsi, Int. J. Miner. Process. 123 (2013) 78–86.CrossRefGoogle Scholar
  15. [15]
    H. Ipek, Y. Ucbas, C. Hosten, Miner. Eng. 18 (2005) 981–983.CrossRefGoogle Scholar
  16. [16]
    K.S. Free, M.K. McCarter, R.P. King, Miner. Metall. Process. 22 (2005) 96–100.Google Scholar
  17. [17]
    W. Wu, Xinjiang Metall. 33 (2010) 111–114.Google Scholar
  18. [18]
    D.Q. Zhu, C.C. Yang, J. Pan, Q. Zhang, B.J. Shi, Metall. Mater. Trans. B 47 (2016) 1010–1023.CrossRefGoogle Scholar
  19. [19]
    D.Q. Zhu, F. Zhang, Z.Q. Guo,  J. Pan, W. Yu, Int. J. Min. Met. Mater. 24 (2017) 473–485.CrossRefGoogle Scholar
  20. [20]
    H.X. Zhang, Fujian Anal. Test. 15 (2006) 47–49.MathSciNetGoogle Scholar
  21. [21]
    O.A. Mohamed, M.E.H. Shalabi, N.A. El-Hussiny, M.H. Khedr, F. Mostafa, Powder Technol. 130 (2003) 277–282.CrossRefGoogle Scholar
  22. [22]
    J.Y. Fu, T. Jiang, D.Q. Zhu, Sintering and pelletizing, Central South University Press, Changsha, 1953.Google Scholar
  23. [23]
    D.Q. Zhu, T.J. Chun, J. Pan, Z.Q. Guo, Ironmak. Steelmak. 40 (2013) 430–435.CrossRefGoogle Scholar
  24. [24]
    Z.Q. Guo, D.Q. Zhu, J. Pan, F. Zhang, Powder Technol. 329 (2018) 55–64.CrossRefGoogle Scholar
  25. [25]
    Z.Q. Guo, D.Q. Zhu, J. Pan, F. Zhang, JOM 70 (2018) 533–538.CrossRefGoogle Scholar
  26. [26]
    Z.Q. Guo, D.Q. Zhu, J. Pan, W.J. Yao, W.Q. Xu, J.A. Chen, JOM 79 (2017) 1688–1695.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • De-qing Zhu
    • 1
  • Zheng-qi Guo
    • 1
  • Jian Pan
    • 1
  • Zhao-yuan Wang
    • 2
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Engineering Design and Research InstituteNorthern Heavy Industries GroupShenyangChina

Personalised recommendations