Advertisement

Microscopic damage mechanism of SA508 Gr3 steel in ultra-high temperature creep

  • Zhi-gang Xie
  • Yan-ming He
  • Jian-guo Yang
  • Xiang-qing Li
  • Chuan-yang Lu
  • Zeng-liang Gao
Original Paper
  • 44 Downloads

Abstract

The lower head of reactor pressure vessel (RPV) will endure a great temperature gradient above the phase transition temperature, and the creep and fracture will be the primary failure mode for the RPV material in such a situation. The interrupted creep tests were performed on a typical RPV material, SA508 Gr3 steel, at 800 °C. The microstructure of different creep stages was examined by scanning electron microscopy and transmission electron microscopy. The results showed that the microscopic damage is mainly induced by creep cavities and coarse second-phase particles. Furthermore, the volume fractions of creep cavities and coarse second-phase particles show a linear relationship with the extended creep time. The second-phase particles are determined to be MoC in the second creep stage and Mo2C in the third creep stage, according to the results of selected-area electron diffraction pattern. Combined with energy-dispersive spectrum analysis, the segregation of precipitates caused by the migration of atoms is finally unveiled, which leads to the coarsening of the particles.

Keywords

Reactor pressure vessel SA508 Gr3 steel In-vessel retention Second-phase particle Damage mechanism Ultra-high temperature creep 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51575489) and National 13th Five-Year Key Technologies R&D Program (No. 2016YFC0801902).

References

  1. [1]
    S. Hashimoto, S. Ugawa, K. Nanko, K. Shichi, Sci. Rep. 2 (2012) 416.CrossRefGoogle Scholar
  2. [2]
    S. M. Friedman, Bulletin Atom. Sci. 67 (2011) 55–65.CrossRefGoogle Scholar
  3. [3]
    G. Steinhauser, A. Brandl, T. E. Johnson, Sci. Total Environ. 470 (2014) 800–817.CrossRefGoogle Scholar
  4. [4]
    T. G. Theofanous, C. Liu, S. Additon, S. Angelin, O. Kymäläinen, T. Salmassi, Nucl. Eng. Des. 169 (1997) 1–48.CrossRefGoogle Scholar
  5. [5]
    J. Zhu, J. Mao, L. Li, S. Bao, Z. Gao, J. Mech. Eng. 53 (2016) 45–52.CrossRefGoogle Scholar
  6. [6]
    J. Zhu, J. Mao, Y. Li, S. Bao, Z. Gao, J. Chin. Soc. Power Eng. 37 (2017) 335–340.Google Scholar
  7. [7]
    J. Zhu, S. Bao, Y. Li, Z. Gao, in: ASME 2014 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, Anaheim, 2014, pp. 1–7.Google Scholar
  8. [8]
    J. Mao, J. Zhu, S. Bao, L. Luo, Z. Gao, J. Press. Vess. Tech. 139 (2016) 107–116.CrossRefGoogle Scholar
  9. [9]
    J. Mao, X. Li, S. Bao, L. Luo, Z. Gao, Nucl. Eng. Des. 316 (2017) 63–74.CrossRefGoogle Scholar
  10. [10]
    C.C. Sainte, Report DMT/95-236, CEA Saclay, 1995.Google Scholar
  11. [11]
    D. S. Sui, F. Chen, P. P. Zhang, Z. S. Cui, J. Iron Steel Res. Int. 21 (2014) 1022–1029.CrossRefGoogle Scholar
  12. [12]
    J. H. Kim, E. P. Yoon, J. Kor. Inst. Met. Mater. 36 (1998) 1329–1337.Google Scholar
  13. [13]
    S. Kim, S. Y. Kang, S. Lee, S. Oh, S. Kwon, O. Kim, J. Hong, Metall. Mater. Trans. A 31 (2000) 1107–1119.CrossRefGoogle Scholar
  14. [14]
    Z. G. Xie, Y. M. He, J. G. Yang, Z. Gao, Trans. Tech. Publications 853 (2016) 153–157.Google Scholar
  15. [15]
    Y. Q. Deng, L. H. Zhu, Q. J. Wang, F. M. Zou, J. Iron Steel Res. 19 (2007) 46–50.Google Scholar
  16. [16]
    Q. Zhao, X. K. Peng, R. Wang, J. Iron Steel Res. 22 (2010) 56–58.CrossRefGoogle Scholar
  17. [17]
    Z. Xie, J. Yang, Y. He, Z. Gao, Nucl. Power Eng. 5 (2016) 33–39.Google Scholar
  18. [18]
    J. Wu, The heat treatment effect on microstructure and mechanical properties of A508-3 steel, Harbin Institute of Technology, Harbin, 2009.Google Scholar
  19. [19]
    Z. Sheng, H. Xiao, F. Peng, Nucl. Power Eng. 9 (1988) 49–53.Google Scholar
  20. [20]
    A. Argon, Strengthening mechanisms in crystal plasticity, Oxford University Press, Oxford, 2007.CrossRefGoogle Scholar
  21. [21]
    A. Mallick, Comp. Mater. Sci. 67 (2013) 27–34.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Zhi-gang Xie
    • 1
    • 2
  • Yan-ming He
    • 1
  • Jian-guo Yang
    • 1
  • Xiang-qing Li
    • 1
  • Chuan-yang Lu
    • 1
  • Zeng-liang Gao
    • 1
  1. 1.Institute of Process Equipment and Control EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.Mechanical and Electrical DepartmentShantou Polytechnic CollegeShantouChina

Personalised recommendations