Skip to main content
Log in

Behavior of molten steel flow in continuous casting mold with different static magnetic field configurations

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A three-dimensional mathematical model was established to investigate the behavior of molten steel flow and steel/slag interface with different processes and electromagnetic parameters under two different static magnetic field configurations [ruler-type electromagnetic brake (EMBr ruler) and vertical electromagnetic brake (V-EMBr)] in a continuous casting mold. The results showed that the brake effect of EMBr ruler is significantly influenced by its configuration parameters, the distance between the pole and bottom of the submerged entry nozzle (SEN), and the port angle of the SEN outlet; therefore, it is not helpful to depress the diffusion of jet flow along the thickness direction of mold. For a constant SEN depth and port angle, there is a reasonable pole position (P = 0 mm) where the pole simultaneously covers three key zones, i.e., the jet flow impact zone and the upward and downward backflow zones. For V-EMBr, the magnetic field can simultaneously cover the three key zones and depress the diffusion of jet flow along the casting and thickness directions of the mold. Both the meniscus height and the impact intensity of the jet flow can be obviously depressed by V-EMBr even if the SEN depth and port angle have changed in the continuous casting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Takatani, K. Nakai, N. Kasai, T. Watanabe, H. Nakajima, ISIJ Int. 29 (1989) 1063–1068.

    Article  Google Scholar 

  2. H. Shen, B. Liu, L. Wang, Int. J. Cast Metal. Res. 18 (2005) No. 4, 209–213.

    Article  Google Scholar 

  3. Y.S. Hwang, P.R. Cha, H.S. Nam, K.H. Moon, J.K. Yoon, ISIJ Int. 37 (1997) 659–667.

    Article  Google Scholar 

  4. H.Q. Yu, B.F. Wang, H.Q. Li, J.C. Li, J. Mater. Process. Technol. 202 (2008) 179–187.

    Article  Google Scholar 

  5. S. Garcia-Hernandez, R.D. Morales, E. Torres-Alonso, Ironmak. Steelmak. 37 (2010) 360–368.

    Article  Google Scholar 

  6. H. Yamamura, T. Toh, H. Harada, E. Takeuchi, T. Ishii, ISIJ Int. 41 (2001) 1229–1235.

    Article  Google Scholar 

  7. M.M. Yavuz, Steel Res. Int. 82 (2011) 809–818.

    Article  Google Scholar 

  8. R. Singh, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 44 (2013) 1201–1221.

    Article  Google Scholar 

  9. K.H. Moon, H.K. Shin, B.J. Kim, J.Y. Chung, Y.S. Hwang, J.K. Yoon, ISIJ Int. 36 (1996) S201–S203.

    Article  Google Scholar 

  10. S. Garcia-Hernandez, R.D. Morales, E. Torres-Alonso, A. Najera-Bastida, Steel Res. Int. 80 (2009) 816–823.

    Google Scholar 

  11. K. Cukierski, B.G. Thomas, Metall. Mater. Trans. B 39 (2008) 94–107.

    Article  Google Scholar 

  12. R. Singh, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 45 (2014) 1098–1115.

    Article  Google Scholar 

  13. B.K. Li, T. Okane, T. Umeda, Metall. Mater. Trans. B 31 (2000) 1491–1503.

    Article  Google Scholar 

  14. H. Jia, Z.Q. Zhang, Z. Yu, K. Deng, Z.S. Lei, Z.M. Ren, Acta Metall. Sin. 48 (2012) 1049–1056.

    Article  Google Scholar 

  15. A. Idogawa, M. Sugizawa, S. Takeuchi, K. Sorimachi, T. Fujii, Mater. Sci. Eng. A 173 (1993) 293–297.

    Article  Google Scholar 

  16. E.G. Wang, L. Kang, F. Li, in: The Scientific Committee of EMP, Proceeding of the 6th Int. Conference on Electromagnetic Processing of Materials, Forschungszentrum Dresden-Rossendorf, Dresden, Germany, 2009, pp. 583–586.

  17. L.S. Zhang, X.F. Zhang, B. Wang, Q. Liu, Z.G. Hu, Metall. Mater. Trans. B 45 (2014) 295–306.

    Article  Google Scholar 

  18. Y.F. Wang, A.P. Dong, L.F. Zhang, Steel Res. Int. 82 (2011) 428–439.

    Article  Google Scholar 

  19. B.E. Launder, Comput. Methods Appl. Mech. Engrg. 3 (1974) 269–289.

    Article  Google Scholar 

  20. H.Q. Yu, M.Y. Zhu, Acta Metall. Sin. 44 (2008) 1141–1148.

    Google Scholar 

  21. H.Q. Yu, M.Y. Zhu, J. Wang, J. Iron Steel Res. Int. 17 (2010) No. 4, 5–11.

    Article  Google Scholar 

  22. J.J. Zhao, S.S. Cheng, in: Steelmaking Committee, Proceeding of the 15th National Conference on Steelmaking, The Chinese Society for Metals, Xiamen, China, 2008, pp. 425–430.

  23. R. Chaudhary, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 43 (2012) 532–553.

    Article  Google Scholar 

  24. Z.D. Qian, Y.L. Wu, ISIJ Int. 44 (2004) 100–107.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51574083) and the Program of Introducing Talents of Discipline to Universities (The 111 Project of China, No. B07015). The authors would also like to thank the referees for their work which has contributed to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En-gang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Eg. & Xu, Y. Behavior of molten steel flow in continuous casting mold with different static magnetic field configurations. J. Iron Steel Res. Int. 25, 366–377 (2018). https://doi.org/10.1007/s42243-018-0051-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0051-1

Keywords

Navigation