Advertisement

Effect of N and Zr on as-cast microstructure and properties after annealing of a high-speed steel

  • Hao-ran Cui
  • Jian-ping Lai
  • Qing-lin Pan
  • Xiang-dong Wang
Original Paper
  • 44 Downloads

Abstract

Effects of N and Zr on the as-cast microstructure and properties after annealing of high-speed steel (HSS) were investigated by using electronic probe micro-analysis, Rockwell hardness test, X-ray diffractometry and differential scanning calorimetry with combination of microstructure analysis. The results indicate that the addition of N and Zr will refine the eutectic structures and enhance the stability of carbides which are mainly MC, M2C and M7C3. The coarse dendritic structures decrease significantly and most of the carbides are distributed in the microstructure uniformly. Moreover, a kind of Zr–Si compound which only exists in VC is discovered, and this new phase is speculated to be related with the spheroidization of VC. The annealing process is set up to 6 different time periods which are 1, 3, 6, 10, 15 and 20 h, respectively. In different annealing processes at 750 °C which is lower than austenitizing temperature, the addition of N and Zr makes the decrease of hardness more obvious and restrains the precipitation of secondary carbides with the extension of time. Moreover, when the annealing time reaches 20 h, some clusters appear in the matrix of the two samples, and the density of clusters in HSS1 is lower, but the matrix of HSS1 contains more C and alloying elements which indicate more carbides precipitate.

Keywords

N addition Zr addition High-speed steel As-cast microstructure Precipitation Annealing 

Notes

Acknowledgements

This work is financially supported by the Innovation Foundation of Central South University (No. 2016zzts028).

References

  1. [1]
    Q.X. Liu, D.P. Lu, L. Lu, Q. Hu, Q.F. Fu, Z. Zhou, J. Iron Steel Res. Int. 22 (2015) 245–249.CrossRefGoogle Scholar
  2. [2]
    L. Lu, L.G. Hou, H. Cui, J.F. Huang, Y.A. Zhang, J.S. Zhang, J. Iron Steel Res. Int. 23 (2016) 501–508.CrossRefGoogle Scholar
  3. [3]
    M. Boccalini, H. Goldenstein, Int. Mater. Rev. 46 (2001) 92–115.CrossRefGoogle Scholar
  4. [4]
    Z. Bin, S. Yu, C. Jun, C.Z. Shan J. Iron Steel Res. Int. 18 (2011) 41–48.Google Scholar
  5. [5]
    X.F. Zhou, D. Liu, W.L. Zhu, F. Fang, Y.Y. Tu, J.Q. Jiang, J. Iron Steel Res. Int. 24 (2017) 43–49.CrossRefGoogle Scholar
  6. [6]
    X.F. Zhou, F. Fang, J.Q. Jiang, J. Mater. Sci. 46 (2011) 1196–1202.CrossRefGoogle Scholar
  7. [7]
    X.F. Zhou, F. Fang, G. Li, J.Q. Jiang, ISIJ Int. 50 (2010) 1151–1157.CrossRefGoogle Scholar
  8. [8]
    L. Lu, L.G. Hou, J.X. Zhang, H.B. Wang, H. Cui, J.F. Huang, Y.A. Zhang, J.S. Zhang, Mater. Charact. 117 (2016) 1–8.CrossRefGoogle Scholar
  9. [9]
    X.H. Zhi, J.D. Xing, H.G. Fu, B. Xiao, Mater. Lett. 62 (2008) 857–860.CrossRefGoogle Scholar
  10. [10]
    X.H. Zhi, J.D. Xing, H.G. Fu, Y.M. Gao, Mater. Charact. 59 (2008) 1221–1226.CrossRefGoogle Scholar
  11. [11]
    S. Kheirandish, S. Mirdamadi, Y.H.K. Kharrazi, Mater. Sci. Technol. 14 (1998) 312–316.CrossRefGoogle Scholar
  12. [12]
    O.A. Bannykh, V.M. Blinov, M.V. Kostina, Met. Sci. Heat Treat. 45 (2003) 43–48.CrossRefGoogle Scholar
  13. [13]
    V.G. Gavriljuk, H. Berns, C. Escher, N.I. Glavatskaya, A. Sozinov, Y.N. Petrov, Mater. Sci. Eng. A 271 (1999) 14–21.CrossRefGoogle Scholar
  14. [14]
    M.J. Wang, Y. Wang, F.F. Sun, Mater. Sci. Eng. A 438 (2006) 1139–1142.CrossRefGoogle Scholar
  15. [15]
    H.J. Xu, Z. Lu, D.M. Wang, C.M. Liu, Fusion Eng. Des. 114 (2017) 33–39.CrossRefGoogle Scholar
  16. [16]
    F.S. Pan, W.Q. Wang, A.T. Tang, L.Z. Wu, T.T. Liu, R.J. Cheng, Nat. Sci. Mater. Int. 21 (2011) 180–186.CrossRefGoogle Scholar
  17. [17]
    H.G. Fu, Foundry 58 (2009) 690–697.Google Scholar
  18. [18]
    M.J. Wang, L. Chen, Z.X. Wang, E. Bao, J. Rare Earths 30 (2012) 84–89.CrossRefGoogle Scholar
  19. [19]
    B. Jeya Ganesh, S. Raju, A. Kumar Rai, E. Mohandas, M. Vijayalakshmi, K.B.S. Rao, B. Raj, Mater. Sci. Technol. 27 (2011) 500–512.CrossRefGoogle Scholar
  20. [20]
    S. Raju, B. Jeya Ganesh, A. Banerjee, E. Mohandas, Mater. Sci. Eng. A 465 (2007) 29–37.CrossRefGoogle Scholar
  21. [21]
    M.J. Wang, L. Chen, Z.X. Wang, E. Bao, J. Rare Earths 30 (2012) 84–89.CrossRefGoogle Scholar
  22. [22]
    E.T. Turkdogan, Iron Steelmaker 16 (1989) 61–63.Google Scholar
  23. [23]
    M.J. Wang, Y. Wang, Y.C. Xing, L. Chen, Mater. Sci. Eng. A 438 (2006) 1143–1145.CrossRefGoogle Scholar
  24. [24]
    J.T. Yu, H.Y. Lui, W.H. Zhao, Heavy Cast. Forg. 4 (2012) 14–17.Google Scholar
  25. [25]
    H.X. Cui, D.S. Ma, H.X. Xu, W.L. Zhu, J.Q. Jiang, J. Iron Steel Res. Int. 23 (2016) 484–488.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Hao-ran Cui
    • 1
  • Jian-ping Lai
    • 1
  • Qing-lin Pan
    • 1
  • Xiang-dong Wang
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations