Skip to main content
Log in

Combustion performance of nozzles with multiple gas orifices in large ladles for temperature uniformity

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to improve the baking temperature uniformity of the large ladle in steelmaking plants, the flame combustion characteristics of nozzles with different inner structures were numerically simulated with the finite volume method code Fluent. The flow field and premixed combustion reaction inside and outside the nozzle with multiple gas orifices were exhibited. Meanwhile, the influences of the gas injecting angle and the number of gas orifices on temperature, velocity, and pressure fields were studied. The results show that the flame length and width at the rear of flame temperature field reach the maximum values in the nozzle with the gas injecting angle of 20° and 4 gas orifices for the control of premixed combustion inside the nozzle, which could provide better temperature uniformity in ladles. The length of the 1273 K isothermal surface is 4.89 m, and the cross-section area at 4 m away from the outlet of the nozzle is 0.13 m2. The pressure losses of different types of nozzles range from 112.2 to 169.4 Pa and decrease with the decrement in gas injecting angle and the number of gas orifices. The ladle bottom preheating temperature is increased by 320–360 K for the optimized nozzle. The inner surface temperature differences between wall and bottom of the ladle are less than 10%. There is good baking temperature uniformity after the application of optimum structurally designed nozzles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.P. Liu, G.Y. Ma, L. Yuan, D.S. Wang, T.F. Zhang, W.D. Li, Z. Jia, Energy Metall. Ind. 36 (2017) No. 1, 3–5.

    Google Scholar 

  2. J.P. Ou, Study on application of HTAC in metallurgy and its optimization with numerical simulation, Central South University, Changsha, 2004.

    Google Scholar 

  3. F. Yuan, A.J. Xu, D.F. He, H.B. Wang, J. Harbin Inst. Technol. 48 (2016) No. 7, 176–181.

    Google Scholar 

  4. W. Liu, P. Long, M.L. Chai, Z. Chen, X.H. Yu, Chin. J. Process. Eng. 15 (2015) 259–265.

    Google Scholar 

  5. F. Yuan, S.C. Zhou, Z.C. Hou, H.B. Wang, A.J. Xu, D.F. He, Energy Metall. Ind. 35 (2016) No. 3, 21–24.

    Google Scholar 

  6. S.M. Hashemi, S.A. Hashemi, Fuel 202 (2017) 56–65.

    Article  Google Scholar 

  7. L.L. Ji, D.F. He, A.J. Xu, H.B. Wang, X.F. Ge, Iron and Steel 48 (2013) No. 4, 76–81.

    Google Scholar 

  8. B.N. Zhao, X. Luo, Forg. Stamp. Technol. 39 (2014) No. 11, 81–85.

    Google Scholar 

  9. H. Tsuji, A.K. Gupta, T. Hasegawa, M. Katsuki, K. Kishimoto, M. Morita, High temperature air combustion: from energy conservation to pollution reduction, CRC Press, New York, 2003.

    Google Scholar 

  10. M. Baigmohammadi, S. Tabejamaat, M. Faghani-Lamraski, Energy 121 (2017) 657–675.

    Article  Google Scholar 

  11. H. Taghavifar, S. Khalilarya, S. Jafarmadar, F. Baghery, Appl. Math. Model. 40 (2016) 8630–8646.

    Article  MathSciNet  Google Scholar 

  12. Y. Afarin, S. Tabejamaat, Int. J. Hydrogen Energ. 38 (2013) 3447–3458.

    Article  Google Scholar 

  13. H.F. Elattar, E. Specht, A. Fouda, A.S. Bin-Mahfouz, Heat Mass Transf. 52 (2016) 2635–2648.

    Article  Google Scholar 

  14. Q. Xu, J. X. Feng, Appl. Therm. Eng. 118 (2017) 734–741.

    Article  Google Scholar 

  15. X.Y. Leng, Y. Jin, Z.X. He, W.Q. Long, K. Nishida, Fuel 197 (2017) 31–41.

    Article  Google Scholar 

  16. M.H.S. Moghaddam, M.S. Moghaddam, M. Khorramdel, Energy 125 (2017) 654–662.

    Article  Google Scholar 

  17. H.S. Zhen, Y.S. Choy, C.W. Leung, C.S. Cheung, Appl. Energy 88 (2011) 2917–2924.

    Article  Google Scholar 

  18. S. Som, S.K. Aggarwal, Combust. Flame 157 (2010) 1179–1193.

    Article  Google Scholar 

  19. S. Som, A.I. Ramirez, D.E. Longman, S.K. Aggarwal, Fuel 90 (2011) 1267–1276.

    Article  Google Scholar 

  20. Y. Yu, M. Shademan, R.M. Barron, R. Balachandar, Eng. Appl. Comput. Fluid Bech. 6 (2012) 412–425.

    Google Scholar 

  21. J.S. Cai, H.M. Tsai, F. Liu, Comput. Fluids 39 (2010) 539–552.

    Article  Google Scholar 

  22. M. Aligoodarz, M. Soleimanitehrani, H. Karrabi, F. Ehsaniderakhshan, Proc. Inst. Eng. Part G J. Aerosp. Eng. 230 (2016) 2379–2391.

    Article  Google Scholar 

  23. Tongji University, Chongqing University, Harbin Institute of Technology, Beijing University of Civil Engineering and Architecture, Gas combustion and utilization, 4th edition. China Architecture and Building Press, Beijing, 2011.

  24. A. Khoshhal, M. Rahimi, A.A. Alsairafi, Numer. Heat Transf. Part A 59 (2011) 633–651.

    Article  Google Scholar 

  25. J.M. Loy, S.R. Mathur, J.Y. Murthy, J. Heat Transf. 137 (2015) 012402.

    Article  Google Scholar 

  26. G.N. Lygidakis, I.K. Nikolos, Numer. Heat Transf. Part B 62 (2012) 289–314.

    Article  Google Scholar 

  27. D.C. Haworth, Prog. Energy Combust. Sci. 36 (2010) 168–259.

    Article  Google Scholar 

  28. L.K. Ma, B. Naud, D. Roekaerts, Flow Turbul. Combust. 96 (2016) 469–502.

    Article  Google Scholar 

  29. S. Park, J.A. Kim, C. Ryu, W. Yang, Y.J. Kim, S. Seo, J. Mech. Sci. Technol. 26 (2012) 1633–1641.

    Article  Google Scholar 

  30. Y.H. Nie, H.Q. Chen, J. Northeast. Univ. 22 (2001) 443–445.

    Google Scholar 

  31. T.F. Smith, Z.F. Shen, J.N. Friedman, J. Heat Transf. 104 (1982) 602–608.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0601301) and National Natural Science Foundation of China (51674030, 51574032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., Wang, HB., Zhou, PL. et al. Combustion performance of nozzles with multiple gas orifices in large ladles for temperature uniformity. J. Iron Steel Res. Int. 25, 387–397 (2018). https://doi.org/10.1007/s42243-018-0048-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0048-9

Keywords

Navigation