Impacts of multiple laser shock processing on microstructure and mechanical property of high-carbon steel

  • Yi Xiong
  • Tian-tian He
  • Yan Lu
  • Han-sheng Bao
  • Yong Li
  • Feng-zhang Ren
  • Wei Cao
  • Alex A. Volinsky
Original Paper


Multiple laser shock processing (LSP) impacts on microstructures and mechanical properties were investigated through morphological determinations and hardness testing. Microscopic results show that without equal channel angular pressing (ECAP), the LSP-treated lamellar pearlite was transferred to irregular ferrite matrix and incompletely broken cementite particles. With ECAP, LSP leads to refinements of the equiaxed ferrite grain in ultrafine-grained microduplex structure from 400 to 150 nm, and the completely spheroidized cementite particles from 150 to 100 nm. Consequentially, enhancements of mechanical properties were found in strength, microhardness and elongations of samples consisting of lamellar pearlite and ultrafine-grained microduplex structure. After LSP, a mixture of quasi-cleavage and ductile fracture was formed, different from the typical quasi-cleavage fracture from the original lamellar pearlite and the ductile fracture of the microduplex structure.


Laser shock processing High-carbon steel Ultrafine-grained microduplex structure Mechanical property 



This work was supported by the NSFC (50801021, 51201061) and by Program for Science, Technology Innovation Talents in Universities of the Henan Province (17HASTIT026), the Science and Technology Project of the Henan Province (152102210077), International Scientific and Technological Cooperation Project from Science and Technology Department of Henan Province (172102410032), Education Department of the Henan Province (16A430005) and the Science and Technology Innovation Team of the Henan University of Science and Technology (2015XTD006).


  1. [1]
    C.S. Montross, T. Wei, L. Ye, G. Clark, Y.W. Mai, Int. J. Fatigue 24 (2002) 1021–1036.CrossRefGoogle Scholar
  2. [2]
    B.P. Fairand, B.A. Wilcox, W.J. Gallagher, D.N. Williams, J. Appl. Phys. 43 (1972) 3893–3895.CrossRefGoogle Scholar
  3. [3]
    J.Z. Lu, K.Y. Luo, F.Z. Dai, J.W. Zhong, L.Z. Xu, C.J. Yang, L. Zhang, Q.W. Wang, J.S. Zhong, D.K. Yang, Y.K. Zhang, Mater. Sci. Eng. A 536 (2012) 57–63.CrossRefGoogle Scholar
  4. [4]
    H. Lim, P. Kim, H. Jeong, S. Jeong, J. Mater. Process. Technol. 212 (2012) 1347–1354.CrossRefGoogle Scholar
  5. [5]
    X.F. Nie, W.F. He, S.L. Zang, X.D. Wang, J. Zhao, Surf. Coat. Technol. 253 (2014) 68–75.CrossRefGoogle Scholar
  6. [6]
    J.Z. Lu, L.J. Wu, G.F. Sun, K.Y. Luo, Y.K. Zhang, J. Cai, C.Y. Cui, X.M. Luo, Acta Mater. 127 (2017) 252–266.CrossRefGoogle Scholar
  7. [7]
    M.Z. Ge, J.Y. Xiang, J. Alloy. Compd. 680 (2016) 544–552.CrossRefGoogle Scholar
  8. [8]
    S. Huang, J.Z. Zhou, J. Sheng, K.Y. Luo, J.Z. Lu, Z.C. Xu, X.K. Meng, L. Dai, L.D. Zuo, H.Y. Ruan, H.S. Chen, Int. J. Fatigue 47 (2013) 292–299.CrossRefGoogle Scholar
  9. [9]
    J. Cai, S. Shekhar, J. Wang, M.R. Shankar, Scripta Mater. 60 (2009) 599–602.CrossRefGoogle Scholar
  10. [10]
    J.Z. Lu, J.S. Zhong, K.Y. Luo, L. Zhang, H. Qi, M. Luo, X.J. Xu, J.Z. Zhou, Surf. Coat. Technol. 221 (2013) 88–93.CrossRefGoogle Scholar
  11. [11]
    C. Ye, S. Suslov, B.J. Kim, E.A. Stach, G.J. Cheng, Acta Mater. 59 (2011) 1014–1025.CrossRefGoogle Scholar
  12. [12]
    C.R. González, C.F. Martinez, G.G. Rosas, J.L. Ocâna, M. Morales, J.A. Porro, Mater. Sci. Eng. A 528 (2011) 914–919.CrossRefGoogle Scholar
  13. [13]
    X.M. Luo, G.Z. Zhao, Y.K. Zhang, K.M. Chen, K.Y. Luo, X.D. Ren, Acta Metall. Sin. 48 (2012) 1116–1122.CrossRefGoogle Scholar
  14. [14]
    T.T. He, Y. Xiong, F.Z. Ren, Z.Q. Guo, A.A. Volinsky, Mater. Sci. Eng. A 535 (2012) 306–310.CrossRefGoogle Scholar
  15. [15]
    J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, J.W. Zhong, Acta Mater. 58 (2010) 3984–3994.CrossRefGoogle Scholar
  16. [16]
    E. Werner, Acta Mater. 37 (1989) 2047–2053.CrossRefGoogle Scholar
  17. [17]
    R. Kaspar, W. Kapellner, C. Lang, Steel Res. Int. 59 (1988) 492–498.CrossRefGoogle Scholar
  18. [18]
    E.A. Chojnowski, W.J.M. Tegart, Metal Sci. J. 2 (1968) 14–18.CrossRefGoogle Scholar
  19. [19]
    J.Z. Lu, J.W. Zhong, K.Y. Luo, L. Zhang, F.Z. Dai, K.M. Chen, Q.W. Wang, J.S. Zhong, Y.K. Zhang, Mater. Sci. Eng. A 528 (2011) 6128–6133.CrossRefGoogle Scholar
  20. [20]
    J.Z. Lu, K.Y. Luo, Y.K. Zhang, G.F. Sun, Y.Y. Gu, J.Z. Zhou, X.D. Ren, X.C. Zhang, L.F. Zhang, K.M. Chen, C.Y. Cui, Y.F. Jiang, A.X. Feng, L. Zhang, Acta Mater. 58 (2010) 5354–5362.CrossRefGoogle Scholar
  21. [21]
    V. Lemiale, Y. Estrin, H.S. Kim, R.O. Donnell, Comput. Mater. Sci. 48 (2010) 124–132.CrossRefGoogle Scholar
  22. [22]
    Z. Zhou, S. Bhamare, G. Ramakrishnan, S.R. Mannava, K. Langer, Y.H. Wen, D. Qian, V.K. Vasudevan, Surf. Coat. Technol. 206 (2012) 4619–4627.CrossRefGoogle Scholar
  23. [23]
    X.D. Ren, Q.B. Zhan, H.M. Yang, F.Z. Dai, C.Y. Cui, G.F. Sun, L. Ruan, Mater. Des. 44 (2013) 149–154.CrossRefGoogle Scholar
  24. [24]
    Y. Xiong, T.T. He, F.Z. Ren, P.Y. Li, L.F. Chen, A. A.Volinsky, J. Iron Steel Res. Int. 22 (2015) 55–59.CrossRefGoogle Scholar
  25. [25]
    J.Z. Lu, K.Y. Luo, Y.K. Zhang, J.Z. Zhou, X.G. Cui, L. Zhang, J.W. Zhong, Mater. Sci. Eng. A 528 (2010) 730–735.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Yi Xiong
    • 1
    • 2
  • Tian-tian He
    • 1
  • Yan Lu
    • 1
  • Han-sheng Bao
    • 3
  • Yong Li
    • 3
  • Feng-zhang Ren
    • 1
    • 2
  • Wei Cao
    • 4
    • 5
  • Alex A. Volinsky
    • 6
  1. 1.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.Collaborative Innovation Center of Nonferrous MetalsLuoyangChina
  3. 3.Institute for Special SteelsCentral Iron and Steel Research InstituteBeijingChina
  4. 4.Nano and Molecular Systems Research UnitUniversity of OuluOuluFinland
  5. 5.School of Mechanical and Automotive EngineeringAnhui Polytechnic UniversityWuhuChina
  6. 6.Department of Mechanical EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations