Application status and comparison of dioxin removal technologies for iron ore sintering process

Abstract

The emission of dioxins from the iron ore sintering process is the largest emission source of dioxins, and the reduction in dioxin emission from the iron ore sintering process to the environment is increasingly important. Three approaches to control the emission of dioxins were reviewed: source control, process control, and terminal control. Among them, two terminal control technologies, activated carbon adsorption and selective reduction technology, were discussed in detail. Following a comparison of the reduction technologies, the terminal control method was indicated as the key technology to achieve good control of dioxins during the sintering process. For the technical characteristics of the sintering process and flue gas, multiple methods should be collectively considered, and the most suitable method may be addition of inhibitors + ultra-clean dust collection (electrostatic precipitation/bag filter) + desulphurization + selective catalytic reduction to sufficiently remove multiple pollutants, which provides a direction for the cooperative disposal of flue gas pollutants in future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. [1]

    P.S. Kulkarni, J.G. Crespo, C.A.M. Afonso, Environ. Int. 34 (2008) 139–153.

  2. [2]

    M. Van den Berg, L.S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, H. Fiedler, H. Hanansson, A. Hanberg, …, R.E. Peterson, Toxicol. Sci. 93 (2006) 223–241.

  3. [3]

    G.X. Wei, H.Q. Liu, Z. Rui, Y.W. Zhu, X. Xian, D.D Zang, J. Hazard. Mater. 325 (2017) 230–238.

  4. [4]

    R. Lohmann, K. Breivik, J. Dachs, D. Muir, Environ. Pollut. 150 (2007) 150–165.

  5. [5]

    S.J. Lee, H. Park, S.D. Choi, J.M. Lee, Y.S. Chang, Atmospheric Environ. 41 (2007) 5876–5886.

  6. [6]

    J.G. Li, L. Zhang, Y.N. Wu, Y.P. Liu, P.P. Zhou, S. Wen, J.Y. Liu, Y.F. Zhao, X.W. Li, Chemosphere 75 (2009) 1236–1242.

  7. [7]

    X.R. Zhao, M.H. Zheng, B. Zhang, W.B. Liu, Sci. Total Environ. 368 (2006) 744–752.

  8. [8]

    H.F. Wang, C.X. Zhang, J.M. Qie, J.C. Zhou, Y. Liu, X.P. Li, F.Q. Shangguan, J. Iron Steel Res. Int. 24 (2017) 235–242.

  9. [9]

    Z.P. Li, X.H. Fan, G.M. Yang, J.C. Wei, Y. Sun, M. Wang, J. Iron Steel Res. Int. 22 (2015) 473–477.

  10. [10]

    L.X. Qian, H.M. Long, X.J. Wu, T.J. Chun, Y.F. Wang, Environment Pollution & Control 38 (2016) No. 6, 34–38.

  11. [11]

    N. Takeda, M. Takaoka, K. Oshita, S. Eguchi, Chemosphere 98 (2014) 91–98.

  12. [12]

    L. Stieglitz, G. Zwick, J. Beck, H. Bautz, W. Roth, Chemosphere 19 (1989) 283–290.

  13. [13]

    L. Stieglitz, M. Eichberger, J. Schleihauf, J. Beck, G. Zwick, R. Will, Chemosphere 27 (1993) 343–350.

  14. [14]

    S.K. Nganai, Iron (III) oxide and copper (II) oxide mediated formation of PCDD/Fs from thermal degradation of 2-MCP and 1, 2-DCBz, Kenyatta University, Nairobi, 2010.

  15. [15]

    Y.Q. Peng, J.H. Chen, S.Y. Lu, J.X. Huang, M.M. Zhang, A. Buekens, X.D. Li, J.H. Yan, Chem. Eng. J. 292 (2016) 398–414.

  16. [16]

    C.O. Tze, L.M. Lu, Chemosphere 85 (2011) 291–299.

  17. [17]

    R. Addink, K. Olie, Environ. Sci. Technol. 29 (1995) 1425–1435.

  18. [18]

    B.K. Gullett, P.M. Lemieux, J.E. Dunn, Environ. Sci. Technol. 28 (1994) 107–118.

  19. [19]

    H.B. Yang, X.W. Li, Y.M. Yu, X.L. He, Sintering and Pelletizing 36 (2011) No. 1, 47–51.

  20. [20]

    Y.C. Zhang, H.M. Long, T.J. Chun, X.J. Wu, P. Wang, Q.M. Meng, Iron and Steel 50 (2015) No. 12, 42–46.

  21. [21]

    S. Kasama, Y. Yamamura, K. Watanabe, ISIJ Int. 46 (2006) 1014–1019.

  22. [22]

    X.H. Fan, Z.Y. Yu, M. Gan, W.Q. Li, Z.Y. Ji, J. Iron Steel Res. Int. 20 (2013) No. 6, 1–6.

  23. [23]

    Y.C. Chen, P.J. Tsai, J.L. Mou, Y.C. Kuo, S.M. Wang, L.H. Young, Y.F. Wang, Chemosphere 88 (2012) 1324–1331.

  24. [24]

    Y.M. Yu, M.H. Zheng, X.W. Li, X.L. He, J. Environ. Sci. 24 (2012) 875–881.

  25. [25]

    Y.L. Qu, Y.L. Mao, X. Jing, B. Li, Sintering and Pelletizing 40 (2015) No. 5, 42–47.

  26. [26]

    K. Tuppurainen, I. Halonen, P. Ruokojärvi, J. Tarhanen, J. Ruuskanen, Chemosphere 36 (1998) 1493–1511.

  27. [27]

    H. Ismo, T. Kari, R. Juhani, Chemosphere 34 (1997) 2649–2662.

  28. [28]

    P. Łechtańska, G. Wielgosiński, Ecol. Chem. Eng. S. 21 (2014) 59–70.

  29. [29]

    H.M. Long, J.X. Li, P. Wang. J. Cent. South Univ. 19 (2012) 1359–1363.

  30. [30]

    H.M. Long, X.J. Wu, T.J. Chun, Z.X. Di, P. Wang, Q.M. Meng, Int. J. Miner. Metall. Mater. 23 (2016) 1239–1243.

  31. [31]

    H.M. Long, X.J. Wu, T.J. Chun, J.X. Li, P. Wang, Q.M. Meng, Z.X. Di, X.Y. Zhang, High. Temp. Mater. Process. 36 (2017) 183–188.

  32. [32]

    X.J. Wu, H.M. Long, T.J. Chun, J.X. Li, L.X. Qian, Y.H. Zhang, C. Ning, Y.F. Wang, Environmental Pollution and Control 38 (2016) No. 5, 61–66.

  33. [33]

    B. Tian, J. Huang, S.B. Deng, S.W. Yang, G. Yang, Progress in Chemistry 22 (2010) 1836–1843.

  34. [34]

    H. Mätzing, W. Baumann, B. Becker, K. Jay, H.R. Paur, H. Seigert, Chemosphere 42 (2001) 803–809.

  35. [35]

    M.B. Chang, K.H Chi, G.P. Chang-Chien, Chemosphere 55 (2004) 1457–1467.

  36. [36]

    D.G. Olson, K. Tsuji, I. Shiraishi, Fuel Process. Technol. 65 (2000) 393–405.

  37. [37]

    H. Ruegg, A. Sigg, Chemosphere 25 (1992) 143–148.

  38. [38]

    H. Tejima, I. Nakagawa, T. Shinoda, I. Maeda, Chemosphere 32 (1996) 169–175.

  39. [39]

    A. Smolka, K.G. Schmidt, Chemosphere 34 (1997) 1075–1082.

  40. [40]

    K.H. Chi, S.H. Chang, C.H. Huang, H.C. Huang, M.B. Chang, Chemosphere 64 (2006) 1489–1498.

  41. [41]

    X.L. Liu, M. Ye, X. Wang, W. Liu, T.Y. Zhu, J. Environ. Sci. 54 (2017) 239–245.

  42. [42]

    X.J. Zhou, X.D. Li, S.X. Xu, M.J. Ni, K.F. Cen, Environment Pollution & Control 38 (2016) No. 1, 76–81.

  43. [43]

    V.D. Jong, M.K. Cieplik, W.A. Reints, F. Fernandez-Reino, R. Louw, J. Catal. 211 (2002) 355–365.

  44. [44]

    R. Weber, T. Sakurai, H. Hagenmaier, Appl. Catal. B: Environ. 20 (1999) 249–256.

  45. [45]

    F. Bertinchamps, C. Gregoire, E.M. Gaigneaux, Appl. Catal. B: Environ. 66 (2006) 10–22.

  46. [46]

    M.F. Yu, W.W. Li, X.D. Li, X.Q. Lin, T. Chen, J.H. Yan, Chemosphere. 156 (2016) 383–391.

  47. [47]

    C.C. Yang, S.H. Chang, B.Z. Hong, K.H. Chi, M.B. Chang, Chemosphere 73 (2008) 890–895.

  48. [48]

    M. Ishida, R. Shiji, P. Nie, N. Nakamura, S. Sakai, Chemosphere 37 (1998) 2299–2308.

  49. [49]

    Q.L. Wang, P.C. Hung, S.Y. Lu, M.B. Chang, Chemosphere 159 (2016) 132–137.

  50. [50]

    C.H. Cho, S.K. Ihm, Env. Sci. Technol. 36 (2002) 1600–1606.

  51. [51]

    G. Wielgosiński, A. Grochowalski, T. Machej, T. Pająk, W. Ćwiąkalski, Chemosphere. 67 (2007) S150–S154.

  52. [52]

    H. Huang, Y. Gu, J. Zhao, X. Wang, J. Catal. 326 (2015) 54–68.

  53. [53]

    Y. Chen, Q. Wu, K. Liu, Chemosphere. 154 (2016) 472–481.

  54. [54]

    Q.L. Meng, Z.X. Li, Q.W. Yang, Y.R. Song, Engineering Journal of Wuhan University 45 (2012) 751–756.

  55. [55]

    M. Goemans, P. Clarysse, J. Joannes, P. De Clercq, S. Lenaerts, K. Mattys, K. Boels, Chemosphere 50 (2003) 489–497.

  56. [56]

    X.M. Yan, Y.R. Li, T.Y. Zhu, F. Qi, Journal of Environment Engineering Technology 5 (2015) 85–90.

  57. [57]

    P.C. Hung, W.C. Lo, K.H. Chi, S.H. Chang, M.B. Chang, Chemosphere 82 (2011) 72–77.

  58. [58]

    M. Geomans, P. Clarysse, J. Joannès, P. De Clercq, S. Lenaerts, K. Matthys, K. Boels, Chemosphere 54 (2004) 1357–1365.

  59. [59]

    H.M. Long, X.J. Wu, J.X. Li, P. Wang, T.J. Chun, R.F. Wei, L.X. Qian, Sintering and Pelletizing 41 (2016) No. 3, 46–51.

  60. [60]

    E.A. Mousa, A. Babich, D. Senk, ISIJ Int. 53 (2013) 1372–1380.

  61. [61]

    T.S. Shih, M. Shih, W.J. Lee, S.L. Huang, L.C. Wang, Y.C. Chen, P.J. Tsai, Chemosphere 74 (2009) 1463–1470.

  62. [62]

    H.M. Long, J.X. Li, P. Wang, G. Gao, J. Zhang, The Chinese Journal of Process Engineering 10 (2010) 944–949.

  63. [63]

    K. Hell, L. Stieglitz, E. Dinjus, P. Segers, A. Buekens, Organohalogen Compounds 46 (2000) 181–184.

Download references

Acknowledgements

The authors acknowledge financial support from the Key Project of National Natural Science Foundation of China (U1660206) and General Program of National Natural Science Foundation of China (51674002).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hong-ming Long or Qi Shi or Hong-liang Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Long, H., Shi, Q., Zhang, H. et al. Application status and comparison of dioxin removal technologies for iron ore sintering process. J. Iron Steel Res. Int. 25, 357–365 (2018). https://doi.org/10.1007/s42243-018-0046-y

Download citation

Keywords

  • Iron ore sintering process
  • Dioxins
  • Removal technology
  • Activated carbon adsorption
  • Selective catalytic reduction