Application status and comparison of dioxin removal technologies for iron ore sintering process

  • Hong-ming LongEmail author
  • Qi ShiEmail author
  • Hong-liang ZhangEmail author
  • Ru-fei Wei
  • Tie-jun Chun
  • Jia-xin Li


The emission of dioxins from the iron ore sintering process is the largest emission source of dioxins, and the reduction in dioxin emission from the iron ore sintering process to the environment is increasingly important. Three approaches to control the emission of dioxins were reviewed: source control, process control, and terminal control. Among them, two terminal control technologies, activated carbon adsorption and selective reduction technology, were discussed in detail. Following a comparison of the reduction technologies, the terminal control method was indicated as the key technology to achieve good control of dioxins during the sintering process. For the technical characteristics of the sintering process and flue gas, multiple methods should be collectively considered, and the most suitable method may be addition of inhibitors + ultra-clean dust collection (electrostatic precipitation/bag filter) + desulphurization + selective catalytic reduction to sufficiently remove multiple pollutants, which provides a direction for the cooperative disposal of flue gas pollutants in future.


Iron ore sintering process Dioxins Removal technology Activated carbon adsorption Selective catalytic reduction 



The authors acknowledge financial support from the Key Project of National Natural Science Foundation of China (U1660206) and General Program of National Natural Science Foundation of China (51674002).


  1. [1]
    P.S. Kulkarni, J.G. Crespo, C.A.M. Afonso, Environ. Int. 34 (2008) 139–153.Google Scholar
  2. [2]
    M. Van den Berg, L.S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, H. Fiedler, H. Hanansson, A. Hanberg, …, R.E. Peterson, Toxicol. Sci. 93 (2006) 223–241.Google Scholar
  3. [3]
    G.X. Wei, H.Q. Liu, Z. Rui, Y.W. Zhu, X. Xian, D.D Zang, J. Hazard. Mater. 325 (2017) 230–238.Google Scholar
  4. [4]
    R. Lohmann, K. Breivik, J. Dachs, D. Muir, Environ. Pollut. 150 (2007) 150–165.Google Scholar
  5. [5]
    S.J. Lee, H. Park, S.D. Choi, J.M. Lee, Y.S. Chang, Atmospheric Environ. 41 (2007) 5876–5886.Google Scholar
  6. [6]
    J.G. Li, L. Zhang, Y.N. Wu, Y.P. Liu, P.P. Zhou, S. Wen, J.Y. Liu, Y.F. Zhao, X.W. Li, Chemosphere 75 (2009) 1236–1242.Google Scholar
  7. [7]
    X.R. Zhao, M.H. Zheng, B. Zhang, W.B. Liu, Sci. Total Environ. 368 (2006) 744–752.Google Scholar
  8. [8]
    H.F. Wang, C.X. Zhang, J.M. Qie, J.C. Zhou, Y. Liu, X.P. Li, F.Q. Shangguan, J. Iron Steel Res. Int. 24 (2017) 235–242.Google Scholar
  9. [9]
    Z.P. Li, X.H. Fan, G.M. Yang, J.C. Wei, Y. Sun, M. Wang, J. Iron Steel Res. Int. 22 (2015) 473–477.Google Scholar
  10. [10]
    L.X. Qian, H.M. Long, X.J. Wu, T.J. Chun, Y.F. Wang, Environment Pollution & Control 38 (2016) No. 6, 34–38.Google Scholar
  11. [11]
    N. Takeda, M. Takaoka, K. Oshita, S. Eguchi, Chemosphere 98 (2014) 91–98.Google Scholar
  12. [12]
    L. Stieglitz, G. Zwick, J. Beck, H. Bautz, W. Roth, Chemosphere 19 (1989) 283–290.Google Scholar
  13. [13]
    L. Stieglitz, M. Eichberger, J. Schleihauf, J. Beck, G. Zwick, R. Will, Chemosphere 27 (1993) 343–350.Google Scholar
  14. [14]
    S.K. Nganai, Iron (III) oxide and copper (II) oxide mediated formation of PCDD/Fs from thermal degradation of 2-MCP and 1, 2-DCBz, Kenyatta University, Nairobi, 2010.Google Scholar
  15. [15]
    Y.Q. Peng, J.H. Chen, S.Y. Lu, J.X. Huang, M.M. Zhang, A. Buekens, X.D. Li, J.H. Yan, Chem. Eng. J. 292 (2016) 398–414.Google Scholar
  16. [16]
    C.O. Tze, L.M. Lu, Chemosphere 85 (2011) 291–299.Google Scholar
  17. [17]
    R. Addink, K. Olie, Environ. Sci. Technol. 29 (1995) 1425–1435.Google Scholar
  18. [18]
    B.K. Gullett, P.M. Lemieux, J.E. Dunn, Environ. Sci. Technol. 28 (1994) 107–118.Google Scholar
  19. [19]
    H.B. Yang, X.W. Li, Y.M. Yu, X.L. He, Sintering and Pelletizing 36 (2011) No. 1, 47–51.Google Scholar
  20. [20]
    Y.C. Zhang, H.M. Long, T.J. Chun, X.J. Wu, P. Wang, Q.M. Meng, Iron and Steel 50 (2015) No. 12, 42–46.Google Scholar
  21. [21]
    S. Kasama, Y. Yamamura, K. Watanabe, ISIJ Int. 46 (2006) 1014–1019.Google Scholar
  22. [22]
    X.H. Fan, Z.Y. Yu, M. Gan, W.Q. Li, Z.Y. Ji, J. Iron Steel Res. Int. 20 (2013) No. 6, 1–6.Google Scholar
  23. [23]
    Y.C. Chen, P.J. Tsai, J.L. Mou, Y.C. Kuo, S.M. Wang, L.H. Young, Y.F. Wang, Chemosphere 88 (2012) 1324–1331.Google Scholar
  24. [24]
    Y.M. Yu, M.H. Zheng, X.W. Li, X.L. He, J. Environ. Sci. 24 (2012) 875–881.Google Scholar
  25. [25]
    Y.L. Qu, Y.L. Mao, X. Jing, B. Li, Sintering and Pelletizing 40 (2015) No. 5, 42–47.Google Scholar
  26. [26]
    K. Tuppurainen, I. Halonen, P. Ruokojärvi, J. Tarhanen, J. Ruuskanen, Chemosphere 36 (1998) 1493–1511.Google Scholar
  27. [27]
    H. Ismo, T. Kari, R. Juhani, Chemosphere 34 (1997) 2649–2662.Google Scholar
  28. [28]
    P. Łechtańska, G. Wielgosiński, Ecol. Chem. Eng. S. 21 (2014) 59–70.Google Scholar
  29. [29]
    H.M. Long, J.X. Li, P. Wang. J. Cent. South Univ. 19 (2012) 1359–1363.Google Scholar
  30. [30]
    H.M. Long, X.J. Wu, T.J. Chun, Z.X. Di, P. Wang, Q.M. Meng, Int. J. Miner. Metall. Mater. 23 (2016) 1239–1243.Google Scholar
  31. [31]
    H.M. Long, X.J. Wu, T.J. Chun, J.X. Li, P. Wang, Q.M. Meng, Z.X. Di, X.Y. Zhang, High. Temp. Mater. Process. 36 (2017) 183–188.Google Scholar
  32. [32]
    X.J. Wu, H.M. Long, T.J. Chun, J.X. Li, L.X. Qian, Y.H. Zhang, C. Ning, Y.F. Wang, Environmental Pollution and Control 38 (2016) No. 5, 61–66.Google Scholar
  33. [33]
    B. Tian, J. Huang, S.B. Deng, S.W. Yang, G. Yang, Progress in Chemistry 22 (2010) 1836–1843.Google Scholar
  34. [34]
    H. Mätzing, W. Baumann, B. Becker, K. Jay, H.R. Paur, H. Seigert, Chemosphere 42 (2001) 803–809.Google Scholar
  35. [35]
    M.B. Chang, K.H Chi, G.P. Chang-Chien, Chemosphere 55 (2004) 1457–1467.Google Scholar
  36. [36]
    D.G. Olson, K. Tsuji, I. Shiraishi, Fuel Process. Technol. 65 (2000) 393–405.Google Scholar
  37. [37]
    H. Ruegg, A. Sigg, Chemosphere 25 (1992) 143–148.Google Scholar
  38. [38]
    H. Tejima, I. Nakagawa, T. Shinoda, I. Maeda, Chemosphere 32 (1996) 169–175.Google Scholar
  39. [39]
    A. Smolka, K.G. Schmidt, Chemosphere 34 (1997) 1075–1082.Google Scholar
  40. [40]
    K.H. Chi, S.H. Chang, C.H. Huang, H.C. Huang, M.B. Chang, Chemosphere 64 (2006) 1489–1498.Google Scholar
  41. [41]
    X.L. Liu, M. Ye, X. Wang, W. Liu, T.Y. Zhu, J. Environ. Sci. 54 (2017) 239–245.Google Scholar
  42. [42]
    X.J. Zhou, X.D. Li, S.X. Xu, M.J. Ni, K.F. Cen, Environment Pollution & Control 38 (2016) No. 1, 76–81.Google Scholar
  43. [43]
    V.D. Jong, M.K. Cieplik, W.A. Reints, F. Fernandez-Reino, R. Louw, J. Catal. 211 (2002) 355–365.Google Scholar
  44. [44]
    R. Weber, T. Sakurai, H. Hagenmaier, Appl. Catal. B: Environ. 20 (1999) 249–256.Google Scholar
  45. [45]
    F. Bertinchamps, C. Gregoire, E.M. Gaigneaux, Appl. Catal. B: Environ. 66 (2006) 10–22.Google Scholar
  46. [46]
    M.F. Yu, W.W. Li, X.D. Li, X.Q. Lin, T. Chen, J.H. Yan, Chemosphere. 156 (2016) 383–391.Google Scholar
  47. [47]
    C.C. Yang, S.H. Chang, B.Z. Hong, K.H. Chi, M.B. Chang, Chemosphere 73 (2008) 890–895.Google Scholar
  48. [48]
    M. Ishida, R. Shiji, P. Nie, N. Nakamura, S. Sakai, Chemosphere 37 (1998) 2299–2308.Google Scholar
  49. [49]
    Q.L. Wang, P.C. Hung, S.Y. Lu, M.B. Chang, Chemosphere 159 (2016) 132–137.Google Scholar
  50. [50]
    C.H. Cho, S.K. Ihm, Env. Sci. Technol. 36 (2002) 1600–1606.Google Scholar
  51. [51]
    G. Wielgosiński, A. Grochowalski, T. Machej, T. Pająk, W. Ćwiąkalski, Chemosphere. 67 (2007) S150–S154.Google Scholar
  52. [52]
    H. Huang, Y. Gu, J. Zhao, X. Wang, J. Catal. 326 (2015) 54–68.Google Scholar
  53. [53]
    Y. Chen, Q. Wu, K. Liu, Chemosphere. 154 (2016) 472–481.Google Scholar
  54. [54]
    Q.L. Meng, Z.X. Li, Q.W. Yang, Y.R. Song, Engineering Journal of Wuhan University 45 (2012) 751–756.Google Scholar
  55. [55]
    M. Goemans, P. Clarysse, J. Joannes, P. De Clercq, S. Lenaerts, K. Mattys, K. Boels, Chemosphere 50 (2003) 489–497.Google Scholar
  56. [56]
    X.M. Yan, Y.R. Li, T.Y. Zhu, F. Qi, Journal of Environment Engineering Technology 5 (2015) 85–90.Google Scholar
  57. [57]
    P.C. Hung, W.C. Lo, K.H. Chi, S.H. Chang, M.B. Chang, Chemosphere 82 (2011) 72–77.Google Scholar
  58. [58]
    M. Geomans, P. Clarysse, J. Joannès, P. De Clercq, S. Lenaerts, K. Matthys, K. Boels, Chemosphere 54 (2004) 1357–1365.Google Scholar
  59. [59]
    H.M. Long, X.J. Wu, J.X. Li, P. Wang, T.J. Chun, R.F. Wei, L.X. Qian, Sintering and Pelletizing 41 (2016) No. 3, 46–51.Google Scholar
  60. [60]
    E.A. Mousa, A. Babich, D. Senk, ISIJ Int. 53 (2013) 1372–1380.Google Scholar
  61. [61]
    T.S. Shih, M. Shih, W.J. Lee, S.L. Huang, L.C. Wang, Y.C. Chen, P.J. Tsai, Chemosphere 74 (2009) 1463–1470.Google Scholar
  62. [62]
    H.M. Long, J.X. Li, P. Wang, G. Gao, J. Zhang, The Chinese Journal of Process Engineering 10 (2010) 944–949.Google Scholar
  63. [63]
    K. Hell, L. Stieglitz, E. Dinjus, P. Segers, A. Buekens, Organohalogen Compounds 46 (2000) 181–184.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of EducationAnhui University of TechnologyMa’anshanChina
  2. 2.School of Metallurgical EngineeringAnhui University of TechnologyMa’anshanChina

Personalised recommendations