Thermogravimetric study of combustion of biomass and anthracite coal by iso-conversional method

Original Paper
  • 25 Downloads

Abstract

The combustion characteristics of biomass, anthracite coal and their blends were investigated using thermogravimetry, and the kinetic parameters and combustion reaction mechanisms were tested by combining the iso-conversional method and Avrami method in order to find out the kinetics characteristics responsible for the combustion of samples. In biomass combustion, two peaks were observed at 332.3 and 472.3 °C, but the reactive rate curve of coal showed one peak with maximum mass loss rate at 552.8 °C. The ignition temperature and burnout temperature of blends decreased, and the ignition index and combustibility index increased with the increase in biomass content. Calculation of kinetic parameters showed that the values of activation energy of blends increased with increasing biomass content from 150.77 to 215.93 kJ/mol. The reaction orders of blends lay in the range of 0.44 and 0.78.

Keywords

Biomass Pulverized coal Combustion Kinetics Thermogravimetry Iso-conversional method 

References

  1. [1]
    T. Ariyama, M. Sato, ISIJ Int. 46 (2006) 1736–1744.Google Scholar
  2. [2]
    Y.S. Shen, B.Y. Guo, A.B. Yu, D. Maldonado, P. Austin, P. Zulli, ISIJ Int. 48 (2008) 777–786.Google Scholar
  3. [3]
    J. Ding, L.C. Liu, L.J. Jiang, G.Q. Liu, S. Ren, J. Yang, L. Yao, F. Meng, J. Iron Steel Res. Int. 23 (2016) 917–923.Google Scholar
  4. [4]
    G.Q. Liu, Q.C. Liu, X.Q. Wang, F. Meng, S. Ren, Z.P. Ji, J. Iron Steel Res. Int. 22 (2015) 812–817.Google Scholar
  5. [5]
    L. Dong, S.Q. Gao, W.L. Song, G.W. Song, Fuel Process. Technol. 88 (2007) 707–715.Google Scholar
  6. [6]
    D.B. Huang, Y.B. Zong, R.F. Wei, W. Gao, X.M. Liu, J. Iron Steel Res. Int. 23 (2016) 874–883.Google Scholar
  7. [7]
    G.W. Wang, J.L. Zhang, J.G. Shao, Z.J. Liu, H.Y. Wang, X.Y. Li, P.C. Zhang, W.W. Geng, G.H. Zhang, Energy 114 (2016) 143–154.Google Scholar
  8. [8]
    G.W. Wang, J.L. Zhang, J.G. Shao, Y.K. Jiang, B. Gao, D. Zhao, D.H. Liu, H.Y. Wang, Z.J. Liu, K.X. Jiao, Bioresources 11 (2016) 4821–4838.Google Scholar
  9. [9]
    G.W. Wang, J.L. Zhang, X.M. Hou, J.G. Shao, W.W. Geng, Bioresour. Technol. 177 (2015) 66–73.Google Scholar
  10. [10]
    K.V. Narayanan, E. Natarajan, Renew. Energy 32 (2007) 2548–2558.Google Scholar
  11. [11]
    J.M. Ekmann, J.C. Winslow, S.M. Smouse, M. Ramezan, Fuel Process. Technol. 54 (1998) 171–188.Google Scholar
  12. [12]
    G.W. Wang, J.L. Zhang, J.G. Shao, Z.J. Liu, G.H. Zhang, T. Xu, J. Guo, H.Y. Wang, R.S. Xu, H. Lin, Energy Convers. Manage. 124 (2016) 414–426.Google Scholar
  13. [13]
    G.W. Wang, J.L. Zhang, J.G. Shao, S. Ren, Thermochim. Acta 591 (2014) 68–74.Google Scholar
  14. [14]
    R.D. Li, X.P. Kai, T.H. Yang, Y. Sun, Y.G. He, S.Q. Shen, Energy Convers. Manage. 83 (2014) 197–202.Google Scholar
  15. [15]
    C.C. Zhou, G.J. Liu, S.W. Cheng, T. Fang, P.S.C. Lam, Bioresour. Technol. 166 (2014) 243–251.Google Scholar
  16. [16]
    M.V. Gil, D. Casal, C. Pevida, J.J. Pis, F. Rubiera, Bioresour. Technol. 101 (2010) 5601–5608.Google Scholar
  17. [17]
    G. Skodras, P. Grammelis, P. Basinas, Bioresour. Technol. 98 (2007) 1–8.Google Scholar
  18. [18]
    C. Wang, F. Wang, Q. Yang, R. Liang, Biomass Bioenergy 33 (2009) 50–56.Google Scholar
  19. [19]
    G.W. Wang, J.L. Zhang, J.G. Shao, H. Sun, H.B. Zuo, J. Iron Steel Res. Int. 21 (2014) 897–904.Google Scholar
  20. [20]
    T. Sinem, Y. Yuda, J. Therm. Anal. Calorim. 107 (2011) 925–933.Google Scholar
  21. [21]
    M. Otero, X. Gómez, A.I. García, A. Morán, J. Therm. Anal. Calorim. 93 (2008) 619–626.Google Scholar
  22. [22]
    Y.G. Xu, C. Zhang, J. Xia, Y.H. Duan, J.J. Yin, G. Chen, Asia-Pacific J. Chem. Eng. 5 (2010) 435–440.Google Scholar
  23. [23]
    R.H. Essenhigh, M.K. Misra, S.W. Shaw, Combust. Flame 77 (1989) 3–21.Google Scholar
  24. [24]
    G.W. Wang, J.L. Zhang, G.H. Zhang, X.J. Ning, X.Y. Li, Z.J. Liu, J. Guo, Energy 131 (2017) 27–40.Google Scholar
  25. [25]
    J.H. Flynn, Thermochim. Acta 14 (1997) 83–92.Google Scholar
  26. [26]
    T. Ozawa, J. Therm. Anal. 2 (1970) 301–324.Google Scholar
  27. [27]
    C. Doyle, J. Appl. Polym. Sci. 6 (1962) 639–642.Google Scholar
  28. [28]
    T. Ozawa, Bull Chem. Soc. Japan 38 (1965) 1881–1886.Google Scholar
  29. [29]
    J.H. Flynn, L.A. Wall, Polym. Lett. 4 (1966) 323–328.Google Scholar
  30. [30]
    M.X. Fang, D.K. Shen, Y.X. Li, C.J. Yu, Z.Y. Luo, K.F. Cen, J. Anal. Appl. Pyrolysis 77 (2006) 22–27.Google Scholar
  31. [31]
    Q.Z. Li, C.S. Zhao, W.F. Wu, J. Power Eng. 28 (2008) 447–452.Google Scholar
  32. [32]
    J.Z. Liu, Z.G. Feng, B.S. Zhang, J.H. Zhou, K.F. Cen, J. Power Eng. 26 (2006) 121–124.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Dong Wang
    • 1
  • Si-yi Luo
    • 1
  • Yang-min Zhou
    • 1
  • Chui-jie Yi
    • 1
  1. 1.National and Local Joint Engineering Research Center of Metallurgical Slag Efficient Resource UtilizationQingdao Technological UniversityQingdaoChina

Personalised recommendations