Advertisement

Sliding tribological characteristics of Ti48Zr20Nb12Cu5Be15 metallic glass matrix composites under different conditions

  • Zhong-kun Bai
  • Li-ming Du
  • Ming Chen
  • Min Zhang
  • Xiao-hui Shi
  • Hui-jun Yang
Original Paper
  • 38 Downloads

Abstract

A systematic research on the tribological characteristics of Ti48Zr20Nb12Cu5Be15 metallic glass matrix composites was performed under different normal loads in dry condition and simulated seawater. The wear rate decreased with the increase in normal load under dry and simulated seawater conditions. The friction coefficient was lower in the dry condition than in the simulated seawater. The composite showed better wear resistance at lower loads (3, 5 and 10 N) but poor wear resistance at higher loads (15 and 17 N) in the simulated seawater. The analysis of the worn surface illustrated that the wear mechanism in dry condition was plastic deformation, adhesive wear and abrasive wear at 3 and 5 N, while it was abrasive wear and adhesive wear at 10, 15 and 17 N. The wear mechanism in simulated seawater was abrasive wear, plastic deformation and adhesive wear at 3 N, adhesive wear at 10 N, and abrasive wear at 5, 15 and 17 N. At the same time, the corrosion occurred during wear tests in the simulated seawater.

Keywords

Amorphous material Rapid solidification Friction Wear Corrosion 

Notes

Acknowledgements

The authors would like to acknowledge the financial support of National Natural Science Foundation of China (No. 51401141).

References

  1. [1]
    W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R. Rep. 44 (2004) 45–89.CrossRefGoogle Scholar
  2. [2]
    A. Inoue, Acta Mater. 48 (2000) 279–306.CrossRefGoogle Scholar
  3. [3]
    J.W. Qiao, Y. Zhang, H.L. Jia, H.J. Yang, P.K. Liaw, B.S. Xu, Appl. Phys. Lett. 100 (2012) 121902.CrossRefGoogle Scholar
  4. [4]
    C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067–4109.CrossRefGoogle Scholar
  5. [5]
    J.W. Qiao, A.C. Sun, E.W. Huang, Y. Zhang, P.K. Liaw, C.P. Chuang, Acta Mater. 59 (2011) 4126–4137.CrossRefGoogle Scholar
  6. [6]
    J. Bai, J.S. Li, J.W. Qiao, J. Wang, R. Feng, H.C. Kou, P.K. Liaw, Sci. Rep. 6 (2016) 32287.CrossRefGoogle Scholar
  7. [7]
    J. Qiao, J. Mater. Sci. Technol. 29 (2013) 685–701.CrossRefGoogle Scholar
  8. [8]
    C.C. Hays, C.P. Kim, W.L. Johnson, Phys. Rev. Lett. 84 (2000) 2901–2904.CrossRefGoogle Scholar
  9. [9]
    J.W. Qiao, H.L. Jia, P.K. Liaw, Mater. Sci. Eng. R. Rep. 100 (2016) 1–69.CrossRefGoogle Scholar
  10. [10]
    Y. Huang, H. Fan, D. Wang, Y. Sun, F. Liu, J. Shen, J. Sun, J. Mi, Mater. Des. 58 (2014) 284–289. CrossRefGoogle Scholar
  11. [11]
    Y. Liu, Y.T Zhu, X.K.Luo, Z.M. Liu, J. Alloy. Compd. 503 (2010) 138–144. CrossRefGoogle Scholar
  12. [12]
    M.L. Rahaman, L.C. Zhang, H.H. Ruan, Intermetallics 52 (2014) 36–48. CrossRefGoogle Scholar
  13. [13]
    M.E. Siegrist, E.D. Amstad, J.F. Löffler, Intermetallics 15 (2007) 1228–1236. CrossRefGoogle Scholar
  14. [14]
    P. Tao, Y. Yang, Z. Xie, Y. He, Mater. Lett. 156 (2015) 177–179. CrossRefGoogle Scholar
  15. [15]
    H. Yang, Y. Liu, T. Zhang, H. Wang, B. Tang, J. Qiao, J. Mater. Sci. Technol. 30 (2014) 576–583. CrossRefGoogle Scholar
  16. [16]
    R. Babilas, A. Bajorek, W. Simka, D. Babilas, Electrochim. Acta 209 (2016) 632–642. CrossRefGoogle Scholar
  17. [17]
    A. Kawashima, K. Ohmura, Y. Yokoyama, A. Inoue, Corros. Sci. 53 (2011) 2778–2784. CrossRefGoogle Scholar
  18. [18]
    H.F. Tian, J.W. Qiao, H.J. Yang, Y.S. Wang, P.K. Liaw, A.D. Lan, Appl. Surf. Sci. 363 (2016) 37–43. CrossRefGoogle Scholar
  19. [19]
    Y. Gu, Z. Zheng, S. Niu, W. Ge, Y. Wang, J. Non-Cryst. Solids. 380 (2013) 135–140. CrossRefGoogle Scholar
  20. [20]
    H.F. Tian, A.D. Lan, Y.S. Wang, H. Yang, S.P. Pan, J.W. Qiao, Mater. Chem. Phys. 162 (2015) 326–331. CrossRefGoogle Scholar
  21. [21]
    X.L. Ji, B. Hu, Y.X. Li, S.Q. Wang, Tribol. Int. 91 (2015) 214–220. CrossRefGoogle Scholar
  22. [22]
    D. Zenebe, S. Yi, S.S. Kim, J. Mater. Sci. 47 (2011) 1446–1451. CrossRefGoogle Scholar
  23. [23]
    J. Bai, J.S. Li, J. Wang, X. Xie, R. Feng, H.Y. Diao, R. Wei, H.C. Kou, P.K. Liaw, J. Alloy. Compd. 679 (2016) 239–246. CrossRefGoogle Scholar
  24. [24]
    B. Vengudusamy, R.A. Mufti, G.D. Lamb, J.H. Green, H.A. Spikes, Tribol. Int. 44 (2011) 922–932. CrossRefGoogle Scholar
  25. [25]
    J. Wang, Q. Jia, X. Yuan, S. Wang, Appl. Surf. Sci. 258 (2012) 9531–9535. CrossRefGoogle Scholar
  26. [26]
    Y. Liu, S.G. Ma, M.C. Gao, C. Zhang, T. Zhang, H.J. Yang, Z. Wang, J.W. Qiao, Metall. Mater. Trans. A 47 (2016) 3312–3321.CrossRefGoogle Scholar
  27. [27]
    J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Wear 261 (2006) 513–519. CrossRefGoogle Scholar
  28. [28]
    Z. Parlar, M. Bakkal, A.J. Shih, Intermetallics 16 (2008) 34–41. CrossRefGoogle Scholar
  29. [29]
    C.C. Chou, S.H. Wang, H.H. Chung, P.K. Liaw, Y. Liou, J.C. Huang, Y.Y. Hsu, Intermetallics 19 (2011) 1216–1221.CrossRefGoogle Scholar
  30. [30]
    X.Y. Wang, D.Y. Li, Wear 259 (2005) 1490–1496. CrossRefGoogle Scholar
  31. [31]
    X.M. Lin, Z.K. Bai, Y.J. Liu, B. Tang, H.J. Yang, J. Alloy. Compd. 686 (2016) 866–873. CrossRefGoogle Scholar
  32. [32]
    H. Duan, Y. Wu, H. Meng, J. Wang, J. Tu, H. Kou, Y. Li, T. Zhang, J. Li, J. Alloy. Compd. 528 (2012) 74–78. CrossRefGoogle Scholar
  33. [33]
    Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, J. Qiao, J. Alloy. Compd. 725 (2017) 365–372. CrossRefGoogle Scholar
  34. [34]
    D.R. Maddala, A. Mubarok, R.J. Hebert, Wear 269 (2010) 572–580. CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Zhong-kun Bai
    • 1
  • Li-ming Du
    • 1
  • Ming Chen
    • 1
  • Min Zhang
    • 1
  • Xiao-hui Shi
    • 1
  • Hui-jun Yang
    • 1
  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations