Skip to main content

Advertisement

Log in

Mechanical property statistical analysis of Gd50Al30Co20 amorphous wires for providing reference to design requirements of cooling system

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Gd50Al30Co20 wires show excellent magnetocaloric properties and high heat exchange rate due to the microsize. The Weibull and lognormal methods were used for systematically analyzing its mechanical properties for matching the design requirements in cooling system. The wire exhibits average fracture strength of ~ 969.5 MPa and typical fracture behavior of amorphous character. Moreover, the distributions of stresses for tensile strains at 10 values are estimated by probability plot and Chi-square goodness-of-fit test. The random stresses were best fitted by lognormal probability distribution for most studied cases; however, fracture strength was best fitted by Weibull probability distribution. It is interesting to note that the mean and standard deviation of the stresses (to reach specific tensile strain) increase as the tensile strain grows, accompanied by the coefficients of variation of stresses which decrease smoothly. It is concluded that the inhomogeneity of material does cause the scatter of stresses growth, and the scatter could be considerably large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.H. Wang, Adv. Mater. 21 (2009) 4524–4544.

    Article  Google Scholar 

  2. B.Z. Tang, P. Yu, D. Ding, C. Wu, L. Xia, J. Magn. Magn. Mater. 424 (2017) 275–278.

    Article  Google Scholar 

  3. M.D. Kuz’min, Appl. Phys. Lett. 90 (2007) 251916.

  4. D. Vuarnoz, T. Kawanami, Appl. Therm. Eng. 37 (2012) 388–395.

    Article  Google Scholar 

  5. B. Schwarz, B. Podmilsak, N. Mattern, J. Eckert, J. Magn. Magn. Mater. 322 (2010) 2298–2303.

    Article  Google Scholar 

  6. J. Du, Q. Zheng, Y.B. Li, Q. Zhang, J. Appl. Phys. 103 (2008) 023918.

    Article  Google Scholar 

  7. Y. Bao, D.Y. Yang, N. Liu, G.Q. Zhang, Z. Li, F.Y. Cao, J.F. Sun, J. Iron Steel Res. Int. 24 (2017) 435–441.

    Article  Google Scholar 

  8. J.F. Zhao, S.G.X.G. Yuan, J.F. Sun, H.J. Huang, F.Y. Cao, H.X. Shen, Y.L. Wang, J. Iron Steel Res. Int. 24 (2017) 469–474.

    Article  Google Scholar 

  9. Y.J. Huang, P. Xue, X. Cheng, Y.M. Wang, F.Y. Cao, Z.L. Ning, J.F. Sun, J. Iron Steel Res. Int. 24 (2017) 416–420.

    Article  Google Scholar 

  10. H. Shen, H. Wang, L. Jingshun, F. Cao, F. Qin, D. Xing, D. Chen, Y. Liu, J. Sun, J. Magn. Magn. Mater. 372 (2014) 23–26.

    Article  Google Scholar 

  11. H. Wang, D. Xing, X. Wang, J. Sun, Metall. Mater. Trans. A 42 (2010) 1103–1108.

    Article  Google Scholar 

  12. J. Liu, F. Qin, D. Chen, H. Shen, H. Wang, D. Xing, M.H. Phan, J. Sun, J. Appl. Phys. 115 (2014) 17A326.

    Article  Google Scholar 

  13. D. Xing, H. Shen, S. Jiang, J. Liu, M.H. Phan, H. Wang, F. Qin, D. Chen, Y. Liu, J. Sun, Phys Status Solidi A 212 (2015) 1905–1910.

    Article  Google Scholar 

  14. H. Shen, H. Wang, J. Liu, D. Xing, F. Qin, F. Cao, D. Chen, Y. Liu, J. Sun, J. Alloy. Compd. 603 (2014) 167–171.

    Article  Google Scholar 

  15. H.X. Shen, D.W. Xing, H. Wang, J.S. Liu, D.M. Chen, Y.F. Liu, J.F. Sun, Mater. Res. 18 (2015) 66–71.

    Article  Google Scholar 

  16. H.X. Shen, D.W. Xing, J.L. Sánchez Llamazares, C.F. Sánchez-Valdés, H. Belliveau, H. Wang, F.X. Qin, Y.F. Liu, J.F. Sun, H. Srikanth, M.H. Phan, Appl. Phys. Lett. 108 (2016) 092403.

    Article  Google Scholar 

  17. W.N. Sharpe, J. Pulskamp, D.S. Gianola, C. Eberl, R.G. Polcawich, R.J. Thompson, Exp. Mech. 47 (2007) 649–658.

    Article  Google Scholar 

  18. W. Weibull, J. Appl. Mech. 18 (1951) 293–297.

    Google Scholar 

  19. Z. Han, L.C. Tang, J. Xu, Y. Li, Scripta Mater 61 (2009) 923–926.

    Article  Google Scholar 

  20. J. Schijve, Fatigue Fract. Eng. Mater. Struct. 17 (1994) 381–396.

    Article  Google Scholar 

  21. J. Dominguez, J. Zapatero, J. Pascual, Eng. Fract. Mech. 56 (1997) 65–76.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the supports from the Key National Natural Science Foundation of China (No. U1533202), the Shandong Independent Innovation and Achievements Transformation Fund (No. 2014CGZH1101), the Civil Aviation Administration of China (No. MHRD20150104), National Science-technology Support Plan Project “the application paradigm of full lifecycle information closed-loop management for construction machinery” (No. 2015BAF32B01-4) and National Natural Science Foundation of China (Nos. 51775132, 51671071 and 51371067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-xian Shen, Lin Lin or Jian-fei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, B., Shen, Hx., Lin, L. et al. Mechanical property statistical analysis of Gd50Al30Co20 amorphous wires for providing reference to design requirements of cooling system. J. Iron Steel Res. Int. 25, 261–267 (2018). https://doi.org/10.1007/s42243-018-0028-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0028-0

Keywords

Navigation