Skip to main content
Log in

Influence of distance between paralleled metal fibers on giant magnetoimpedance

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Giant magnetoimpedance (GMI) and the GMI effect of a Co-based fiber beam were investigated in the frequency range of 0.1–10 MHz, and the influence of distance between adjacent fibers on the distribution of the surface circumferential magnetic field and GMI effect was analyzed. Compared with a single fiber, the distribution of the surface magnetic field of paralleled fibers is non-uniform, induced by magnetic interaction between metal fibers. The originally uniformly distributed circumferential magnetic field changes into two obvious coexisting parts: one stronger and one weaker. The results prove that the strengthened circumferential magnetic field determines the GMI effect and sensitivity. It is found that the maximum surface of the circumferential magnetic field is reinforced by 88% when the four fibers are as closely parallel as possible; the GMI effect is greatest under higher field sensitivity. At 5 MHz, the sensitivity of the four-fiber beam reaches 3090 V/T, an increase of 277% compared with a single fiber. However, the magnetic interaction fades with the increase in distance between fibers and as the distribution of the surface magnetic field becomes even. The maximum magnetic field also becomes gradually equal to the level of a single fiber. When the distance is 1 mm, the maximum surface magnetic field is increased by 3.2%, and the improvement in the GMI effect is correspondingly slight. Therefore, a strong magnetic interaction among fibers can improve the intensity of the surface circumferential magnetic field and give rise to a fine GMI effect and high field sensitivity in Co-based metal fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Mohri, T. Kohzawa, K. Kawashima, H. Yoshida, L.V. Panina, IEEE Trans. Magn. 28 (1992) 3150–3152.

    Article  Google Scholar 

  2. M.H. Phan, H.X. Peng, Prog. Mater Sci. 53 (2008) 323–420.

    Article  Google Scholar 

  3. L.G.C. Melo, D. Menard, A. Yelon, L. Ding, S. Saez, C. Dolabdjian, J. Appl. Phys. 103 (2008) 033903–033906.

    Article  Google Scholar 

  4. D. Zhang, Z. Pan, H. Zhou, W. Zhang, Sens. Actuator A-Phys. 249 (2016) 225–230.

    Article  Google Scholar 

  5. J. Nabias, A. Asfour, J.P. Yonnet, Sensors 17 (2017) 640.

    Article  Google Scholar 

  6. Y. Wanderoild, A. Asfour, P. Lefranc, P.O. Jeannin, J.P. Yonnet, IEEE Trans. Power Electron. 32 (2017) 2493–2497.

    Article  Google Scholar 

  7. A. Zhukov, M. Ipatov, A. Talaat, J.M. Blanco, M. Churyukanova, A. Granovsky, V. Zhukova, J. Supercond. Novel Magn. 30 (2017) 1359–1366.

    Article  Google Scholar 

  8. V. Zhukova, M. Ipatov, J. Gonzalez, J.M. Blanco, A. Zhukov, J. Appl. Phys. 103 (2008) 07E714.

    Article  Google Scholar 

  9. V. Zhukova, M. Ipatov, A. Talaat, J.M. Blanco, M. Churyukanova, A. Zhukov, J. Alloy. Compd. 707 (2017) 189–194.

    Article  Google Scholar 

  10. L.V. Panina, K. Mohri, D.P. Makhnovskiy, J. Appl. Phys. 85 (1999) 5444–5446.

    Article  Google Scholar 

  11. S.H. Song, K.S. Kim, S.C. Yu, C.G. Kim, M.V. Zquez, J. Magn. Magn. Mater. 215216 (2000) 532–534.

    Article  Google Scholar 

  12. C. Garcia, V. Zhukova, A. Zhukov, N. Usov, M. Ipatov, J. Gonzalez, M. Blanco, Sensor Lett. 5 (2007) 1–3.

    Google Scholar 

  13. M.H. Phan, H.X. Peng, S.C. Yu, M.R. Wisnom, J. Magn. Magn. Mater. 316 (2007) e253–e256.

    Article  Google Scholar 

  14. Z. Chen, D.R. Li, Z.C. Lu, S.X. Zhou, J. Iron Steel Res. Int. 15 (2008) No. 2, 91–94.

    Article  Google Scholar 

  15. T.K. Das, A. Mitra, S.K. Mandal, R.K. Roy, P. Banerji, A.K. Panda, Sens. Acta A 220 (2014) Suppl. C, 382–387.

    Article  Google Scholar 

  16. H. Chiriac, D.D. Herea, S. Corodeanu, J. Magn. Magn. Mater. 311 (2007) 425–428.

    Article  Google Scholar 

  17. D. Estévez, A. He, C. Chang, Q. Man, X. Wang, R.W. Li, J. Magn. Magn. Mater. 393 (2015) Suppl. C, 278–283.

    Article  Google Scholar 

  18. F. Qin, H.X. Peng, J. Tang, L.C. Qin, Composites: Part A 41 (2010) 1823–1828.

    Article  Google Scholar 

  19. H. Chiriac, T.A.Ovari, J. Magn. Magn. Mater. 323 (2011) 2929–2940.

    Article  Google Scholar 

  20. S. Puerta, D. Cortina, H. Garcia-Miquel, D.X. Chen, M. Vazquez, J. Non-Cryst. Solids 287 (2001) 370–373.

    Article  Google Scholar 

  21. V. Zhukova, A. Zhukov, K.L. Garcia, V. Kraposhin, A. Prokoshin, J. Gonzalez, M. Vazquez, Sens. Acta A 106 (2003) 225–229.

    Article  Google Scholar 

  22. Y. Kabanov, A. Zhukov, V. Zhukova, J. Gonzalez, Appl. Phys. Lett. 87 (2005) 142507-3.

    Article  Google Scholar 

  23. A. Chizhik, C. Garcia, A. Zhukov, J. Gonzalez, L. Dominguez, J.M. Blanco, Physica B 384 (2006) 5–8.

    Article  Google Scholar 

  24. P. Gawronski, A. Chizhik, J.M. Blanco, J.E. Gonzalez, IEEE Trans. Magn. 46 (2010) 365–368.

    Article  Google Scholar 

  25. J. Velazquez, C. Garcia, M. Vazquez, A. Hernando, Phys. Rev. B (Condensed Matter and Materials Physics) 54 (1996) 9903–9911.

    Article  Google Scholar 

  26. J. Fan, J. Wu, N. Ning, H. Chiriac, X. Li, IEEE Trans. Magn. 46 (2010) 2431–2434.

    Article  Google Scholar 

  27. H. Chiriac, M. Tibu, V. Dobrea, J. Magn. Magn. Mater. 290–291 (2005) 1142–1145.

    Article  Google Scholar 

  28. V.G. Horia Chiriac, S. Corodeanu, IEEE Trans. Magn. 42 (2006) 3359–3361.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Prof. Yelon and Menard from University of Montreal of Canada for support and assistance in impedance experiment. This work was financially supported by the Scientific Research Project of Ningxia Higher Education Institutions (NGY2015056), Key Scientific Research of North Nationalities University (2015KJ15) and National Natural Science Foundation of China (Nos. 51604159, 51365046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-ye Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Sl., Chen, Wy., Geng, Gh. et al. Influence of distance between paralleled metal fibers on giant magnetoimpedance. J. Iron Steel Res. Int. 25, 255–260 (2018). https://doi.org/10.1007/s42243-018-0027-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0027-1

Keywords

Navigation