Skip to main content

Advertisement

Log in

Effect of metallurgical dust on NO emissions during coal combustion process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

NO emissions from coal combustion are receiving significant attention in recent years. As a solid waste generated from metallurgical industry, metallurgical dust (MD) contains a large amount of metal oxides, such as Fe2O3, CaO, SiO2 and Al2O3, as well as other rare metal oxides. The influence of MD on the NO emissions and the mechanism of the coal combustion systems were analyzed. The results show that the peak values of NO emission decrease with the increase in MD mass percent, and the curve of NO emission can be divided into two stages including rapid generation (400−600 °C) and slow release (800−900 °C). The reduction of NO is significantly affected by temperature, volatile components, O2 and CO. CO has a significant catalytic action which can deoxidize NO to N2. The results obtained by X-ray diffraction and scanning electron microscopy indicate that multiple components in MD, such as Fe9TiO15, Fe2O3 and TiO2, can react with NO to produce TiN. Besides, the alkali metals in MD, such as Na, K and Ca, may catalyze NO precursor to inhibit NO emission. These results indicate that MD is cheap and highly efficient in controlling NO emissions during coal combustion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Rokni, A. Panahi, X.H. Ren, Y.A. Levendis, Fuel 181 (2016) 772–784.

    Article  Google Scholar 

  2. Z.C. Chen, Z.W. Wang, Z.Q. Li, Y.Q. Xie, S.G. Ti, Q.Y. Zhu, Energy 73 (2014) 844–855.

    Article  Google Scholar 

  3. L.B. Duan, Y.Q. Duan, C.S. Zhao, E.J. Anthony, Fuel 150 (2015) 8–13.

    Article  Google Scholar 

  4. D.S. Jin, B.R. Deshwal, Y.S. Park, H.K. Lee, J. Hazard. Mater. 135 (2006) 412–417.

    Article  Google Scholar 

  5. W.D. Fan, Z.C. Lin, J.G. Kuang, Y.Y. Li, Fuel Process. Technol. 91 (2010) 625–634.

    Article  Google Scholar 

  6. Y. Zhao, R.L. Hao, M. Qi, Chem. Eng. J. 269 (2015) 159–167.

    Article  Google Scholar 

  7. A.C. Bose, K.M. Dannecker, J.L. Wendt, Energy Fuels 3 (1988) 301–308.

    Article  Google Scholar 

  8. L. Jia, Y. Tan, E. J. Anthony, Energy Fuels 24 (2010) 910–915.

    Article  Google Scholar 

  9. Y. Liu, F. Rehman, W.B. Zimmerman, Fuel 209 (2017) 117–126.

    Article  Google Scholar 

  10. B.R. Deshwal, D.S. Jin, S.H. Lee, S.H. Moon, J.H. Jung, H.K. Lee, J. Hazard. Mater. 150 (2008) 649–655.

    Article  Google Scholar 

  11. J. Riaza, M.V. Gil, L. Álvarez, C. Pevida, J.J. Pis, F. Rubiera, Energy 41 (2012) 429–435.

    Article  Google Scholar 

  12. L. Dong, S.Q. Gao, G.G. Xu, Energy Fuels 24 (2010) 446–450.

    Article  Google Scholar 

  13. Y. Ohtsuka, Z. Wu, F. Edward, Fuel 76 (1997) 1361–1367.

    Article  Google Scholar 

  14. Z.H. Wu, Y. Sugimoto, H. Kawashima, Fuel 82 (2003) 2057–2064.

    Article  Google Scholar 

  15. N. Tsubouchi, Y. Ohtsuka, Fuel 81 (2002) 1423–1431.

    Article  Google Scholar 

  16. Z.B. Zhao, W. Li, J.S. Qiu, B.Q. Li, Fuel 81 (2002) 2343–2348.

    Article  Google Scholar 

  17. J. Li, S. Wang, L. Zhou, G.H. Luo, F. Wei, Chem. Eng. J. 255 (2014) 126–133.

    Article  Google Scholar 

  18. Z. Zhao, W. Li, J. Qiu, X. Wang, B. Li, Fuel 85 (2006) 601–606.

    Article  Google Scholar 

  19. W. Yang, J. Zhou, Z. Zhou, Z. Lu, Z. Wang, J. Liu, K. Cen, Fuel Process. Technol. 89 (2008) 1317–1323.

    Article  Google Scholar 

  20. B. Das, S. Prakash, P.S.R. Reddy, V.N. Misra, Resour. Conserv. Recycl. 50 (2007) 5040–5057.

    Article  Google Scholar 

  21. T. Kuroki, Y. Uchida, H. Takizawa, K. Morita, ISIJ Int. 47 (2007) 592–595.

    Article  Google Scholar 

  22. X.F. She, J.S. Wang, Q.G. Xue, Y.G. Ding, S.S. Zhang, J.J. Dong, H. Zeng, Int. J. Miner. Metall. Mater. 18 (2011) 277–284.

    Article  Google Scholar 

  23. L.Z. Shen, Y.S. Qiao, Y. Guo, J.R. Tan, J. Hazard. Mater. 177 (2010) 495–500.

    Article  Google Scholar 

  24. Z.F. Gao, Z.J. Wu, M.D. Zheng, Energy Fuels 30 (2016) 3320–3330.

    Article  Google Scholar 

  25. L. Deng, X. Jin, Y. Zhang, D.F. Che, Fuel 175 (2016) 217–224.

    Article  Google Scholar 

  26. L.H. Wei, D. Qi, R.D. Li, Journal of China Coal Society 35 (2010) 1706–1710.

    Google Scholar 

  27. F. He, H. Wang, Y.N. Dai, Natural Gas Chem. 16 (2007) 155–161.

    Article  Google Scholar 

  28. C.P. Finimore, Combust. Flame 26 (1976) 249–260.

    Article  Google Scholar 

  29. Y.C. Zhang, J. Zhang, C.D. Sheng, J. Chen, Y.X. Liu, L. Zhao, F. Xie, Energy Fuels 25 (2011) 240–245.

    Article  Google Scholar 

  30. F. Normann, K. Andersson, B. Leckner, F. Johnsson, Energy Fuels 24 (2010) 910–915.

    Article  Google Scholar 

  31. G.G. De Soete, E. Croiset, J.R. Richard, Combust. Flame 117 (1999) 140–154.

    Article  Google Scholar 

  32. S.J. Wang, C. J. Huang, F. Wu, J. Energy Inst. 86 (2013) 167–170.

    Article  Google Scholar 

  33. T.C. Brown, B.S. Haynes, Energy Fuels 6 (1992) 154–159.

    Article  Google Scholar 

  34. A. Molina, E.G. Eddings, D.W. Pershing, A.F. Sarofim, Combust. Flame 136 (2004) 303–312.

    Article  Google Scholar 

  35. B. Guo, Z. Liu, L. Hong, H. Jiang, Surf. Coat. Technol. 198 (2005) 24–29.

    Article  Google Scholar 

  36. R.D. Peelamedu, M. Fleming, D.K. Agrawal, R. Roy, J. Am. Ceram. Soc. 85 (2010) 117–122.

    Article  Google Scholar 

  37. L.J. Liu, H.J. Liu, M.Q. Cui, Fuel 112 (2013) 687–694.

    Article  Google Scholar 

  38. S.Q. Wang, Y. Zhao, P.P. Zhang, Chem. Eng. Res. Des. 89 (2011) 1061–1066.

    Article  Google Scholar 

  39. K.T. Lee, K.C. Tan, I. Dahlan, A.R. Mohamed, Fuel 87 (2008) 2223–2228.

    Article  Google Scholar 

  40. Z. Zhao, W. Li, J. Qiu, B. Li, Fuel 81 (2002) 2343–2348.

    Article  Google Scholar 

  41. O. Yasuo, Z.H. Wu, F. Edward, Fuel 76 (1997) 1361–1367.

    Article  Google Scholar 

  42. F. Wu, S.J. Wang, G. Zhang, P. Zhu, Z.Y. Wang, J. Energy Inst. 87 (2014) 134–139.

    Article  Google Scholar 

  43. Z. Zhao, W. Li, J. Qiu, B. Li, Fuel 82 (2003) 1839–1844.

    Article  Google Scholar 

  44. F. Okasha, Fuel. Process. Technol. 88 (2007) 401–408.

    Article  Google Scholar 

  45. M. Illan-Gomez, A. Linares-Solano, L.R. Radovic, C. Salinas-Martínez de Lecea, Energy Fuels 58 (1996) 58–168.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Joint Fund of the National Natural Science Foundation of China and the Baosteel Group Corporation (No. U1660106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-ming Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Zf., Long, Hm., Chun, Tj. et al. Effect of metallurgical dust on NO emissions during coal combustion process. J. Iron Steel Res. Int. 25, 19–27 (2018). https://doi.org/10.1007/s42243-017-0007-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-017-0007-x

Keywords

Navigation