Skip to main content
Log in

Wearable multilead ECG sensing systems using on-skin stretchable and breathable dry adhesives

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Electrocardiogram (ECG) monitoring is used to diagnose cardiovascular diseases, for which wearable electronics have attracted much attention due to their lightweight, comfort, and long-term use. This study developed a wearable multilead ECG sensing system with on-skin stretchable and conductive silver (Ag)-coated fiber/silicone (AgCF-S) dry adhesives. Tangential and normal adhesion to pigskin (0.43 and 0.20 N/cm2, respectively) was optimized by the active control of fiber density and mixing ratio, resulting in close contact in the electrode–skin interface. The breathable AgCF-S dry electrode was nonallergenic after continuous fit for 24 h and can be reused/cleaned (>100 times) without loss of adhesion. The AgCF encapsulated inside silicone elastomers was overlapped to construct a dynamic network under repeated stretching (10% strain) and bending (90°) deformations, enabling small intrinsic impedance (0.3 Ω, 0.1 Hz) and contact impedance variation (0.7 kΩ) in high-frequency vibration (70 Hz). All hard/soft modules of the multilead ECG system were integrated into lightweight clothing and equipped with wireless transmission for signal visualization. By synchronous acquisition of I–III, aVR, aVL, aVF, and V4 lead data, the multilead ECG sensing system was suitable for various scenarios, such as exercise, rest, and sleep, with extremely high signal-to-noise ratios.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Attia ZI, Kapa S, Lopez-Jimenez F et al (2019) Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med 25:70–74. https://doi.org/10.1038/s41591-018-0240-2

    Article  CAS  PubMed  Google Scholar 

  2. Hannun AY, Rajpurkar P, Haghpanahi M et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25:65–69. https://doi.org/10.1038/s41591-018-0268-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takaya M, Matsuda R, Inamori G et al (2021) Transformable electrocardiograph using robust liquid–solid heteroconnector. ACS Sens 6(1):212–219. https://doi.org/10.1021/acssensors.0c02135

    Article  CAS  PubMed  Google Scholar 

  4. Masihi S, Panahi M, Maddipatla D et al (2021) Development of a flexible wireless ECG monitoring device with dry fabric electrodes for wearable applications. IEEE Sens J 22(12):11223–11232. https://doi.org/10.1109/JSEN.2021.3116215

    Article  ADS  Google Scholar 

  5. Yang J, Zhang K, Yu JJ et al (2021) Facile fabrication of robust and reusable PDMS supported graphene dry electrodes for wearable electrocardiogram monitoring. Adv Mater Technol 6(9):2100262. https://doi.org/10.1002/admt.202100262

    Article  CAS  Google Scholar 

  6. Maithani Y, Choudhuri B, Mehta BR et al (2021) Self-adhesive, stretchable, and dry silver nanorods embedded polydimethylsiloxane biopotential electrodes for electrocardiography. Sens Actuat A Phys 332:113068. https://doi.org/10.1016/j.sna.2021.113068

    Article  CAS  Google Scholar 

  7. Niu X, Wang LZ, Li H et al (2022) Fructus xanthii-inspired low dynamic noise dry bioelectrodes for surface monitoring of ECG. ACS Appl Mater Interfaces 14(4):6028–6038. https://doi.org/10.1021/acsami.1c22303

    Article  CAS  PubMed  Google Scholar 

  8. Kota D, Tasneem N, Kakaraparty K et al (2022) A low-power dry electrode-based ECG signal acquisition with de-noising and feature extraction. J Signal Process Syst 94(6):579–593. https://doi.org/10.1007/s11265-021-01681-z

    Article  Google Scholar 

  9. Lazaro J, Reljin N, Hossain MB et al (2020) Wearable armband device for daily life electrocardiogram monitoring. IEEE Trans Biomed Eng 67(12):3464–3473. https://doi.org/10.1109/TBME.2020.2987759

    Article  PubMed  Google Scholar 

  10. Maji S, Burke MJ (2020) Establishing the input impedance requirements of ECG recording amplifiers. IEEE Trans Instrum Meas 69(3):825–835. https://doi.org/10.1109/TIM.2019.2907038

    Article  ADS  CAS  Google Scholar 

  11. Hoseini Z, Nazari M, Lee KS (2021) Current feedback instrumentation amplifier with built-in differential electrode offset cancellation loop for ECG/EEG sensing frontend. IEEE Trans Instrum Meas 70:2001911. https://doi.org/10.1109/TIM.2020.3031205

    Article  Google Scholar 

  12. Kim HL, Kim MG, Lee C et al (2012) Miniaturized one-point detectable electrocardiography sensor for portable physiological monitoring systems. IEEE Sens J 12(7):2423–2424. https://doi.org/10.1109/JSEN.2012.2192260

    Article  ADS  CAS  Google Scholar 

  13. Yeo WH, Kim YS, Lee J et al (2013) Multifunctional epidermal electronics printed directly onto the skin. Adv Mater 25(20):2773–2778. https://doi.org/10.1002/adma.201204426

    Article  CAS  PubMed  Google Scholar 

  14. Wang YY, Jiang LL, Ren L et al (2021) Towards improving the quality of electrophysiological signal recordings by using microneedle electrode arrays. IEEE Trans Biomed Eng 68(11):3327–3335. https://doi.org/10.1109/TBME.2021.3070541

    Article  PubMed  Google Scholar 

  15. Koo JH, Jeong S, Shim HJ et al (2017) Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 11(10):10032–10041. https://doi.org/10.1021/acsnano.7b04292

    Article  CAS  PubMed  Google Scholar 

  16. Zeng ZK, Huang Z, Leng KM et al (2020) Nonintrusive monitoring of mental fatigue status using epidermal electronic systems and machine-learning algorithms. ACS Sens 5(5):1305–1313. https://doi.org/10.1021/acssensors.9b02451

    Article  CAS  PubMed  Google Scholar 

  17. Zhang SP, Chhetry A, Zahed MA et al (2022) On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex Electron 6(1):11. https://doi.org/10.1038/s41528-022-00140-4

    Article  CAS  Google Scholar 

  18. Sun B, McCay RN, Goswami S et al (2018) Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv Mater 30(50):e1804327. https://doi.org/10.1002/adma.201804327

    Article  CAS  PubMed  Google Scholar 

  19. Uguz DU, Canbaz ZT, Antink CH et al (2022) A novel sensor design for amplitude modulated measurement of capacitive ECG. IEEE Trans Instrum Meas 71:4000710. https://doi.org/10.1109/TIM.2022.3145401

    Article  Google Scholar 

  20. Jiang Z, Nayeem MOG, Fukuda K et al (2019) Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv Mater 31(37):e1903446. https://doi.org/10.1002/adma.201903446

    Article  CAS  PubMed  Google Scholar 

  21. Vuorinen T, Noponen K, Vehkaoja A et al (2019) Validation of printed, skin-mounted multilead electrode for ECG measurements. Adv Mater Technol 4(9):1900246. https://doi.org/10.1002/admt.201900246

    Article  CAS  Google Scholar 

  22. Hong YJ, Jeong H, Cho KW et al (2019) Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater 29(19):1808247. https://doi.org/10.1002/adfm.201808247

    Article  CAS  Google Scholar 

  23. Shiba Y, Fernandes S, Zhu WZ et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325. https://doi.org/10.1038/nature11317

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khoshmanesh F, Thurgood P, Pirogova E et al (2021) Wearable sensors: at the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens Bioelectron 176:112946. https://doi.org/10.1016/j.bios.2020.112946

    Article  CAS  PubMed  Google Scholar 

  25. Bauer M, Wunderlich L, Weinzierl F et al (2021) Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes. Anal Bioanal Chem 413(3):763–777. https://doi.org/10.1007/s00216-020-02939-4

    Article  CAS  PubMed  Google Scholar 

  26. Jiang YZ, Liu LL, Chen L et al (2021) Flexible and stretchable dry active electrodes with PDMS and silver flakes for bio-potentials sensing systems. IEEE Sens J 21(10):12255–12268. https://doi.org/10.1109/JSEN.2021.3061949

    Article  ADS  CAS  Google Scholar 

  27. Afroj S, Tan S, Abdelkader AM et al (2020) Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv Funct Mater 30(23):2000293. https://doi.org/10.1002/adfm.202000293

    Article  CAS  Google Scholar 

  28. Kim T, Park J, Sohn J et al (2016) Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 10(4):4770–4778. https://doi.org/10.1021/acsnano.6b01355

    Article  CAS  PubMed  Google Scholar 

  29. Kim JH, Kim SR, Kil HJ et al (2018) Highly conformable, transparent electrodes for epidermal electronics. Nano Lett 18(7):4531–4540. https://doi.org/10.1021/acs.nanolett.8b01743

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Chun S, Kim DW, Baik S et al (2018) Conductive and stretchable adhesive electronics with miniaturized octopus-like suckers against dry/wet skin for biosignal monitoring. Adv Funct Mater 28(52):1805224. https://doi.org/10.1002/adfm.201805224

    Article  CAS  Google Scholar 

  31. Guo W, Zheng P, Huang X et al (2019) Matrix-independent highly conductive composites for electrodes and interconnects in stretchable electronics. ACS Appl Mater Interfaces 11(8):8567–8575. https://doi.org/10.1021/acsami.8b21836

    Article  CAS  PubMed  Google Scholar 

  32. Jung H, Moon J, Baek D et al (2012) CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans Biomed Eng 59(5):1472–1479. https://doi.org/10.1109/TBME.2012.2190288

    Article  PubMed  Google Scholar 

  33. Qin Q, Li JQ, Yao SS et al (2019) Electrocardiogram of a silver nanowire based dry electrode: quantitative comparison with the standard Ag/AgCl gel electrode. IEEE Access 7:20789–20800. https://doi.org/10.1109/ACCESS.2019.2897590

    Article  Google Scholar 

  34. Wang WT, Lu LS, Lu XY et al (2022) Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf. Bio-Des Manuf 5(4):700–713. https://doi.org/10.1007/s42242-022-00197-0

    Article  CAS  Google Scholar 

  35. Liu CY, Zhang XY, Zhao LN et al (2019) Signal quality assessment and lightweight QRS detection for wearable ECG smartvest system. IEEE Internet Things J 6(2):1363–1374. https://doi.org/10.1109/JIOT.2018.2844090

    Article  Google Scholar 

  36. Fink PL, Muhammad Sayem AS, Teay SH et al (2021) Development and wearer trial of ECG-garment with textile-based dry electrodes. Sens Actuat A Phys 328:112784. https://doi.org/10.1016/j.sna.2021.112784

    Article  CAS  Google Scholar 

  37. Liu L, Li HY, Fan YJ et al (2019) Nanofiber-reinforced silver nanowires network as a robust, ultrathin, and conformable epidermal electrode for ambulatory monitoring of physiological signals. Small 15(22):e1900755. https://doi.org/10.1002/smll.201900755

    Article  CAS  PubMed  Google Scholar 

  38. Xu XW, Luo M, He P et al (2019) Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Appl Phys A Mater Sci Process 125(10):714. https://doi.org/10.1007/s00339-019-3006-x

    Article  CAS  Google Scholar 

  39. Wicaksono I, Tucker CI, Sun T et al (2020) A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flex Electron 4(1):5. https://doi.org/10.1038/s41528-020-0068-y

    Article  Google Scholar 

  40. Yokus MA, Jur JS (2016) Fabric-based wearable dry electrodes for body surface biopotential recording. IEEE Trans Biomed Eng 63(2):423–430. https://doi.org/10.1109/TBME.2015.2462312

    Article  PubMed  Google Scholar 

  41. Wang WT, Lu LS, Li ZH et al (2021) Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene. ACS Appl Mater Interfaces 14(1):1315–1325. https://doi.org/10.1021/acsami.1c16646

    Article  CAS  PubMed  Google Scholar 

  42. Feng B, Jiang X, Zou GS et al (2021) Nacre-inspired, liquid metal-based ultrasensitive electronic skin by spatially regulated cracking strategy. Adv Funct Mater 31(29):2102359. https://doi.org/10.1002/adfm.202102359

    Article  CAS  Google Scholar 

  43. Peng S, Xu K, Chen W (2019) Comparison of active electrode materials for non-contact ECG measurement. Sensors 19(16):3585. https://doi.org/10.3390/s19163585

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Peng S, Xu K, Bao SJ et al (2021) Flexible electrodes-based smart mattress for monitoring physiological signals of heart and autonomic nerves in a non-contact way. IEEE Sens J 21(1):6–15. https://doi.org/10.1109/JSEN.2020.3012697

    Article  ADS  CAS  Google Scholar 

  45. Lee SM, Byeon HJ, Lee JH et al (2014) Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci Rep 4(1):6074. https://doi.org/10.1038/srep06074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pullano SA, Kota VD, Kakaraparty K et al (2022) Optically unobtrusive zeolite-based dry electrodes for wearable ECG monitoring. IEEE Sens J 22(11):10630–10639. https://doi.org/10.1109/JSEN.2022.3169504

    Article  ADS  CAS  Google Scholar 

  47. Tasneem NT, Pullano SA, Critello CD et al (2020) A low-power on-chip ECG monitoring system based on MWCNT/PDMS dry electrodes. IEEE Sens J 20(21):12799–12806. https://doi.org/10.1109/JSEN.2020.3001209

    Article  ADS  CAS  Google Scholar 

  48. Meng Y, Li ZB, Chen JP (2016) A flexible dry electrode based on APTES-anchored PDMS substrate for portable ECG acquisition system. Microsyst Technol 22(8):2027–2034. https://doi.org/10.1007/s00542-015-2490-y

    Article  CAS  Google Scholar 

  49. Wang LF, Liu JQ, Yang B et al (2015) Fabrication and characterization of a dry electrode integrated Gecko-inspired dry adhesive medical patch for long-term ECG measurement. Microsyst Technol 21(5):1093–1100. https://doi.org/10.1007/s00542-014-2279-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Guangdong Province, China (No. 2021B1515020087), the National Natural Science Foundation of China (No. 51905178), and the Climbing Program Foundation of Guangdong Province (No. pdjh2022a0024).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was completed through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Wentao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Experiments involving human subjects were conducted with the full informed consent of volunteers.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1136 kb)

Supplementary file2 (PDF 13767 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Lu, L., Wang, W. et al. Wearable multilead ECG sensing systems using on-skin stretchable and breathable dry adhesives. Bio-des. Manuf. 7, 167–180 (2024). https://doi.org/10.1007/s42242-023-00268-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-023-00268-w

Keywords

Navigation